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Chapter 1

Introduction

1.1 Motivation

Speech synthesis has emerged as an important technology in the context of human-

computer interaction. Although an intensive studied domain, its language dependency

makes it less accessible for most of the languages. If for English, French, Spanish or Ger-

man for example, the variety of choices starts from open-source user-configurable systems

to high-quality proprietary commercial systems, this is not the case for Romanian. The

lack of extended freely available resources makes it hard for the researchers to develop

complete text-to-speech synthesis systems and design new language-dependent enhance-

ments. The available Romanian synthesis systems are mainly commercial or based on

outdated technologies such as formant synthesis or diphone concatenation.

There is also one other problem that is the main focus for the international research

community, and that is the prosodic enhancement of the synthetic speech. Results of most

of the speech synthesisers still have a monotone, unattractive flat intonation contour. This

problem is usually solved by the use of fundamental frequency (F0) contour modelling

and control of the parameters in a deterministic or statistical manner. Most of the F0

modelling or parametrisation techniques are based on extended speech corpora and manual

annotation of the intonation. Some other solutions are language dependent methods,

involving accent patterns or phrasing. Adaptation of these solutions to under-resourced

languages is unfortunately unpractical and hard to achieve.

1



Chapter 1. Introduction

1.2 Objectives

Given the context presented before, the main objective of this thesis is the development

of a new Romanian speech synthesiser, using the latest technology available. The system

should also be able to allow for intonation adaptation. This challenge requires to address

four specific objectives, as described below:

Objective 1: To develop a large high-quality speech corpus in Romanian and an asso-
ciated word lexicon, which can support statistical training of the HMM
models, but which can also be used for other speech-based applications.

Motivation: There are no Romanian speech corpora which can be used
for statistical HMM training.

Objective 2: To create a Romanian text-to-speech system using state-of-the-art tech-
nologies, in the form of HMM-based parametric synthesis.

Motivation: The available Romanian TTS systems use either formant
or concatenative synthesis. These types of synthesis methods have dif-
ficulties when trying to improve the naturalness or expressivity of the
synthetic speech.

Objective 3: To design a new pitch modelling technique, which can be easily applied
for intonation control.

Motivation: The existing pitch modelling techniques require extensive
linguistic studies, and cannot provide a language-independent applica-
tion.

Objective 4: To devise a method for interactive intonation optimisation of the syn-
thetic speech.

Motivation: Even in state-of-the-art TTS systems, the expressivity of
speech cannot be tuned by non-expert users.

2
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1.3 Thesis Outline

The thesis is organised as follows:

Chapter 2 gives an overall view of speech synthesis methods with their respective

advantages and disadvantages. A list of the available Romanian speech synthesiser is also

presented. Chapter specific theoretical issues are presented on a chapter by chapter basis.

Chapter 3 introduces the preparation of the resources needed for a Romanian para-

metric speech synthesiser. After a brief introduction of the Romanian language character-

istics, the chapter describes the tools and design procedures of both text and speech data.

For text, the following issues are addressed: text corpus selection and preprocessing, pho-

netic transcription, accent positioning, syllabification and part-of-speech tagging. Speech

resources include the recording of a high-quality speech corpus (about 4 hours) with the

respective recording text selection and speech data segmentation. Two key features of the

speech resources represent a list of semantically unpredictable sentences used for speech

synthesis evaluation, and the preparation of a freely available online speech corpus (Ro-

manian Speech Synthesis (RSS) corpus) which includes the recordings and several other

information, such as HTS labels, accent positioning for the recorded text, or synthesised

audio samples using RSS.

Chapter 4 presents the development of a Romanian HMM-based (Hidden Markov

Model) speech synthesiser starting from the resources presented in chapter 3. A short

theoretical overview of the HMM models and the HTS (HMM-based Speech Synthesis

System) is presented. The preparation of HTS-compliant data is then described in terms

of text annotation, decision tree clustering questions and segmentation and annotation

of the training corpus. Apart from the novelty of a Romanian HTS system, the chapter

introduces an evaluation of some language-independent configuration parameters. The

results obtained are evaluated in a 3 section listening test: naturalness, speaker similarity

and intelligibility.
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Chapter 5 describes a novel approach to F0 parametrisation using the discrete cosine

transform (DCT). The chapter starts by first analysing some of the most common F0

modelling techniques and their potential application in a system that uses no additional

information, except from the text input and no complex phonological information. The

DCT was chosen for its simplicity, language independency, high modelling capabilities

even with a reduced number of features and the direct inverse transform useful in chapter

6. A superpositional model using the DCT is then proposed and evaluated in the context

of both modelling and prediction of the F0 contour.

Chapter 6 uses the results of chapter 5 to define an interactive optimisation method

using evolution strategies. The method uses the phrase level DCT coefficients of the F0

contour in a interactive CMA-ES (Covariance Matrix Adaptation - Evolution Strategy)

algorithm. The basics of evolutionary computation are presented with a focus on evolu-

tion strategies and CMA-ES. Evaluation of the applicability scenario is performed. This

includes the analysis of the initial standard deviation of the population, number of indi-

viduals per generation and dynamic expansion of the F0 contour. Results of a naturalness

and expressivity listening test are analysed.

Chapter 7 summarises the main conclusions of the thesis and future development

possibilities.
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Chapter 2

Background

2.1 Text-to-speech Synthesis

Text-to-speech (TTS) synthesis is a method for deriving human-like speech from a text

input. Fig. 2.1 shows the basic blocks of a TTS system. The process can be more

easily understood if a parallel to learning a new language is made. Given a text in a new

language, the first step is to determine the text segments which have to be preprocessed

for a correct reading, such as numbers, abbreviations, neologisms and so on. Then,

each letter has to be transposed in an acoustic correspondent or phoneme. Individual

correspondents are not enough, as context influences the sound of a given letter. Having

the correct succession of phonemes can then be concatenated into syllables, words, phrases

and so on. Simple phrasing, duration and basic intonation are then assigned. And, at last

the physical process of speech production, through mechanical articulation of the sounds

takes place. If the person is a more advanced speaker of that language, emphasis and

prosody are more likely to be reproduced correctly, similar to a native speaker.

In the same way, text-to-speech systems evolved from the simple reproduction of

individual sounds through wooden tubes, to state-of-the-art speech synthesisers which

use advanced semantical analysis and can output high-quality expressive speech. The

entire system is usually broken down into two major components: text processing and

speech synthesis. Each of them imply extensive analysis and synthesis methods with their

correspondent arising problems.

The goals of a TTS system according to [Taylor, 2009] are to clearly get the message
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Input Text Speech output

TEXT PROCESSING

‐ Text normalisation
‐ Phonetic transcription

‐ Syntactic analysis
‐ Segmentation

‐ Semantic analysis
‐ Prosodic analysis, etc.

SPEECH SYNTHESIS

‐ Selection of the acoustic 
parameters or segments

‐ Prosodic control
‐ Concatenation or 
parameter tying
‐ Smoothing

‐ Speech synthesis

Figure 2.1: Block diagram of a text-to-speech system

across to the listener in terms of intelligibility and naturalness, and to be able to

synthesise any given input text. This means that the text processor has to be able to

transform any input text into a sequence of labels, and that the speech synthesiser has

the means of outputting qualitative speech from any sequence of input labels.

The need for a text-to-speech system can be emphasised through its applications.

The initial purpose of TTS was for visually impaired people to have access to written

texts without the help of the Braille alphabet. With the appearance of analogue and

digital storing devices, the speech synthesisers were used in even more applications. By

concatenating pre-recorded speech segments, the system could output a limited number

of combinations between the samples. This type of synthesiser is still used in client-

information applications, such as automated answering and GPS machines or ATMs.

More advanced TTS systems are used in intelligent dialogue applications or in combination

with automatic speech recognition, even translating applications from one language to

another.

The following sections give an overview of the standard synthesis methods and the use

of prosody within the text-to-speech systems. The last section presents the Romanian

synthesisers available.
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2.2 Speech Synthesis Methods

Speech production is a complex process which involves a large number of computational

resources and memory. Aside from the even more complex task of caring out a dialogue,

even the reading aloud of a text implies training and processing on behalf of a person.

Over the years multiple methods of speech synthesis have been proposed. One of the

earliest proofs of the so-called talking heads are mentioned for Aurrilac (1003 A.D.),

Albert Magnus (1198-1280) or Roger Bacon (1214-1294). In 1779, the Russian researcher

Christian Kratzenstein, created models of the human vocal tract which could reproduce

the a,e,i,o and u vowels [Giurgiu and Peev, 2006]. The first electronic synthesiser was the

VODER (Voice Operation DEmonstratoR) created by Homer Dudley at Bell Laboratories

in 1939 [Dudley, 1940]. The VODER produced only two basic sounds: a tone generated

by a radio valve to produce the vocal sounds and a hissing noise produced by a gas

discharge tube to create the sibilants. These basic sounds were passed through a set

of filters and an amplifier that mixed and modulated them into the resulted speech.

To get the machine to actually speak required an operator to manipulate a set of keys

and a foot pedal to convert the hisses and tones into vowels, consonants, stops, and

inflections. Fortunately, nowadays, speech synthesisers have evolved to a point where

their intelligibility and naturalness is comparable to human speakers and their operation

requires a minimum amount of training on behalf of the speaker.

Based on the main method of generating the speech signal, speech synthesisers can

be classified into rule-based and corpus-based. In rule-based methods no pre-recorded

speech samples are used, each sound is defined by a fixed set of parameters. Corpus-based

methods use either the speech samples or segments of them, or derive their parameters

from the direct analysis of the speech corpus. Some argue that corpus-based,especially

when using speech samples is not a true synthesis method, because the signal is not

synthesised from scratch, although it is the most commonly used one. In this sense a

different definition of the speech synthesis notion can be given [Taylor, 2009], i.e. the

output of a spoken utterance from a resource in which it has not been prior spoken.
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Figure 2.2: Klaat’s formant synthesiser (after [Benesty et al., 2007])

2.2.1 Rule-based

Formant synthesis

Formant synthesis determines a set of rules on how to modify pitch, formants frequencies

and other parameters from one sound to the other [Huang et al., 2001]. It is based on the

source-filter model of speech production. In formant synthesis, the formant resonances

are represented by a number of filters having as input a train of impulses for the voiced

segments and white noise for the unvoiced segments.

The most representative model of formant synthesis is the one described by [Klatt, 1980],

which later evolved into the commercial system of MITalk [Allen et al., 1987]. There are

around 40 parameters which describe the formants and their respective bandwidths, and

also a series of frequencies for nasals or glottal resonators. A parallel structure of second

order FIR filters is implemented for the fricatives and stops, and a cascade structure for

the voiced sounds [Allen et al., 1987]. Fig. 2.2 presents a simplified version of the Klatt

synthesiser structure.

The problem with the formant synthesis is that the source-filter model itself has the

drawback of not including the reaction of the filter unto the source. Another drawback is
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the fact that the acoustic realisation of a sound varies over time, and cannot be represented

by a fixed set of parameters. The same speaker asked to repeat the same word multiple

times, will use different duration and intonations. Therefore, the formant synthesis lacks

the modelling of the minute variations that make a long duration speech sample natural.

Prosody in formant synthesis can be achieved by modifying the set of frequencies

or filter parameters. However, this implies an extended study of the prosodic effects on

pitch and formants.In [Wolf, 1981] or [Apopei and Jitcă 2007] certain rules for prosody

control are derived, but their results cannot be generalised, because of the particular

characteristics of parameter analysis and synthesis used.

Articulatory synthesis

Articulatory synthesis has the potential of becoming one of the best synthesis meth-

ods. It uses mechanical and acoustic models of speech production to synthesise speech

[Benesty et al., 2007]. The physiological effects are modelled, such as the movement of

the tongue, lips, jaw, and the dynamics of the vocal tract and glottis. Biomechanical,

aerodynamic and acoustic studies are also involved. For example [Bickley et al., 1997]

uses lip opening, glottal area, opening of nasal cavities,constriction of tongue, and rate

between expansion and contraction of the vocal tract along with the first 4 formant fre-

quencies. This is a method which articulatory synthesis with the formant-based one, thus

trying to alleviate the drawbacks of the later.

Unfortunately, the model is very complex and there is still a lack of analysis methods

of the processes involved. A complete articulatory model would also include the electric

impulses of the nerves and muscle movement of the entire phonatory apparatus. The

use of magnetic resonance imaging has offered some more elaborate models of muscle

movement and thus the results of the articulatory synthesis have improved.

However, the results of this type of synthesis are still far from being considered natural

because of the use of partially heuristic determined rules and the fact that the acoustic

processes vary from speaker to speaker. The physical characteristics of a person, such

as length of vocal tract and tongue size influence the mechanical movement in speech

production. Accurate physiological understanding of speech production is also lacking

and thus the parameters of the model cannot be fully determined.
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Prosody is not yet an issue for this type of synthesis because of the early stages of

development in which it still is.

2.2.2 Corpus-based

Concatenative synthesis

Concatenative synthesis is the most commonly used method in commercial systems. It

became a popular choice once the storage and computational characteristics of the digital

devices became more and more advanced. The basic idea is the use of pre-recorded speech

samples of fixed or variable lengths, which can fully capture the fine details of speech.

This aspect was not possible in the rule-based methods.

In this type of method, an utterance is synthesised by concatenating several natural

segments of speech (Fig. 2.3). The samples are stored in a database, indexed by the

phonetic content along with prosodic markers, context or other additional information.

Samples of speech can include utterances, words, syllables, diphones or phonemes. Based

on the type of segment stored in the database, the concatenative synthesis is either fixed

inventory – segments in the database have the same length, or unit selection – segments

have variable length and the system makes a decision of the best match.

Figure 2.3: Basic principle of a concatenative unit selection speech synthesis system (after
[Benesty et al., 2007])
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The most common fixed inventory concatenative synthesis is the diphone concate-

nation [Black et al., 1999, Lambert and Breen, 2004]. A diphone in this case is defined

from the middle of the first phoneme to the middle of the second one. Using this type of

segmentation avoids the concatenation discontinuities at phoneme boundaries. For a sim-

ple diphone concatenation system, the database or speech corpus would include a single

repetition of all the diphones in a language. Some more elaborate systems use diphones

in different context (e.g. beginning, middle or end of word) and with different prosodic

events (e.g. accent, variable durations etc.). Two major problems with this approach

are: the coarticulation1 [Olive et al., 1993] effects over longer units – which cannot be

captured by the diphones; and the concatenation errors – diphones taken from different

contexts have different amplitudes and pitch values.

Another type of fixed inventory system is based on the use of syllables as the con-

catenation unit [Saito et al., 1996, Matoušek et al., 2005, Buza, 2010], but although it can

reduce some of the concatenation discontinuities2, the speech database is hard to design.

The average number of syllables in one language is the order of thousands.

The best concatenative synthesis solution is unit selection [Black and Campbell, 1995],

[Hunt and Black, 1996], which uses variable length speech samples. The samples are se-

lected using scores to determine the best match, and can be phonemes, diphones, syl-

lables, words, or even entire phrases. The speech corpus design is minimum, although

extended databases provide better results. Coarticulation problems are solved in unit

selection by introducing the target cost (Eq. 2.1) and concatenation costs (Eq. 2.2)

[Black and Campbell, 1995]. Target cost represents the cost of selecting a particular unit

from the database, while concatenation cost is the cost of using that unit in the utterance.

The best unit is selected using a Viterbi-like search algorithm over the two cost functions.

Ctarget(ui, us) =
N∑

j=1

w
(t)
t c

(t)
j (ui, us), (2.1)

ui represents the candidate unit, and us the current unit.

1A phoneme’s acoustic production depends on the context in which it is present.
2There are some theories which state that the basic unit of speech is the syllable and the coarticulation

effects between them is minimum
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Cconcatenation(ui−1, ui) =
M∑

k=1

w
(c)
k c

(c)
k (ui−1, ui), (2.2)

ui represents the newly selected unit, and ui−1 the previously selected unit.

Prosody in concatenative synthesis was initially achieved by the use of extended

speech corpora (i.e. tens of hours of speech) which included different prosodic realisations

of the same speech unit. Later, with the use of PSOLA (Pitch Synchronous Overlap

and Add) [Moulines and Charpentier, 1990] and other more advanced techniques, the

prosody could be modelled for each unit individually, at the expense of some loss in

naturalness. However, the best results are still obtained with large scale corpora. Prosodic

manipulation would be easier to achieve if the waveform would have a parametrised form,

such as the case of the next synthesis method.

Although this type of method is applied in most of the best commercial, there are

some major disadvantages of the concatenative synthesis. First of all the need for an

extended speech corpus is not practical, as it requires hours of recording, segmentation

and annotation. Second of all, prosody control from within the corpus is hard to achieve,

because the segments have to be correctly hand labeled and concatenated. An important

problem relies in the flexibility of the system: once a system is built, changing the speaker

requires re-recording the database, annotating it and adjusting the parameters to the

specific speaker.

Statistical Parametric Synthesis

Unit selection synthesis, although providing one the of best quality synthetic speech lacks

the flexibility of the output speech. Quality is directly determined by the speech corpus

and the unit selection algorithms. Parametrising the speech waveform is a solution to

the generalisation problem of the synthetic speech in concatenative systems. Parametric

corpus-based synthesis implies the use of a pre-recorded speech corpus from which it

extracts a selection of parameters. Thus speech synthesis becomes a statistical analysis

of a speech corpus. Parameters are clustered according to context and prosodic features.

The most important parametric technique is the one based on hidden Markov models
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(HMMs), a concept borrowed from automatic speech synthesis and with very good appli-

cability and flexibility within speech synthesis as well. A first attempt to model speech

using HMMs is that of [Falaschi et al., 1989], but the results were unnatural and did not

come to the attention of the specialists. With the introduction of the HMM-based Speech

Synthesis System (HTS) [Zen et al., 2007b], some of the initial problems were solved,

and this method became the choice for research in speech synthesis. In HTS, speech is

modelled through a 3 state HMM for each phoneme. Each state includes mel frequency

cepstral coefficients and F0 with their delta and delta-delta features, and state duration

(Fig. 2.4). Decision trees are employed for the context clustering of the feature vectors to

ensure no low or zero occupancy states. Contextual factors include phonetic, accentual

and syntactic features.

From the target phoneme sequence a sentence of HMMs is derived using the Maximum

Likelihood (ML) algorithm. Over smoothing of the spectral sequence is partially solved

by the global variance (GV) principle [Toda and Tokuda, 2007], which maximises the

dynamic variation of the speech parameters.

Different parameter sets are used in [Acero, 1999] and [Kawahara et al., 1999]. The

[Acero, 1999] approach uses formants as acoustic observation, thus trying to overcome

some of the formant synthesis problems. A very good method of parametrisation is

that of [Kawahara et al., 1999], called STRAIGHT and which uses source and spectral

parameters in the form of: a mixed-excitation model based on a weighted combination of

fundamental frequency and noise, and a set of aperiodicity bands.

The advantages of the parametric synthesis refer to:

• the small footprint necessary to store speech information;

• automatic clustering of speech information– removes the problems of hand-written

rules;

• even small training corpora can result in good quality of the synthetic speech, if the

corpus is well designed;

• generalisable – even if for a certain phoneme context there is not enough training

data, the model might be clustered along with similar parameter characteristics;

• flexibility – the trained models can be easily adapted to other speakers or voice

characteristics with minimum amount of adaptation data.
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Figure 2.4: Common HMM-based speech synthesis system (after [Black et al., 2007])
.

And of course, there are also disadvantages such as low speaker similarity due to the use

of a parametrisation method which cannot capture the fine details of speech. Training on

a large database leads to high computational requirements during the training stage, but

the synthesis part is still minimum computational consuming. Another disadvantage, but

can be also considered as an advantage is the fact that the output is highly dependent

on the parametrisation method, which can be modified and adapted according to new

researches.

Prosody in HTS is achieved by modifying the F0 decision trees or the sequence of

states generated in the synthesis stage. Because it is a parametric method which uses

the ML principle, the modification of the F0 contour can be made, without affecting

the spectral characteristics. Therefore, it is easy to test new F0 contours for the same

utterance, without affecting the naturalness of the synthetic speech.

Detailed theoretical overview of the HMM model and HTS can be found in chapter 4.
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2.3 Speech Synthesis Systems for Romanian

The Romanian speech synthesisers are not that numerous, and except for a few commercial

systems, their quality is rather poor. Below, a list of the available Romanian text-to-

speech systems to the best of the author’s knowledge can be found. It can be observed

that the techniques used in the research systems are outdated.

• Ivona - Carmen www.ivona.com - unit selection - commercial

• Nuance -Simona www.nuance.com - unit selection - commercial

• Loquendo - Ioana www.loquendo.com - unit selection - commercial

• AT&T Bell Labs - concatenation of diphones, context-sensitive allophonic units

or even of triphones

• MBROLA http://tcts.fpms.ac.be/synthesis/mbrola.html, [Dutoit et al., 1996]

- diphone concatenation with overlap and add algorithm for pitch and duration con-

trol

• Romanian Formant Synthesis [Jitcă et al., 2002] - formant synthesis, with sev-

eral prosody control techniques defined for it, such as the ones presented in the

works of [Jitcă et al., 2008], [Apopei and Jitcă 2005] or [Apopei and Jitcă 2007]

• RomVox [Ferencz, 1997] - LPC-based parametric - allows for manual adjustment

of some prosodic parameters

• RomSyn [Giurgiu and Peev, 2006] - diphone concatenation

• LIGHTVOX [Buza, 2010] - syllable concatenation

• BRVox [Bodo, 2009] - diphone concatenation with simple intonation pattern as-

signment based on the research of [Hirst and Cristo, 1998]

• Baum - Ancutza http://www.baum.ro/ -diphone concatenation - commercial

• Phobos TTS http://www.phobos.ro/demos/tts/index.html - based on MBROLA

• eSpeak http://espeak.sourceforge.net/ - formant synthesis

• LingvoSoft Talking Dictionary http://www.lingvosoft.com/ - unavailable for

testing

More information on Romanian syntheis systems and prosodic modelling can be found

in chapters 4 and 5.
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2.4 Summary

This chapter has presented a theoretical overview of the main speech synthesis methods

available, while emphasizing on their strengths and weaknesses. The rule-based methods

use a set of rules for defining the appropriate parameters for the speech units, mainly

phonemes. This type of method is hard to control, as the variability of the parameters is

limited to the studied cases. Their naturalness is poor, but they can be well put to use in

perception experiments and speech production evaluations. In this category, articulatory

synthesis is a potential high-qualitative system, but the complexity of the models involved

puts it on hold until more data can be analysed.

Corpus-based or data driven methods on the other hand are the choice of both com-

mercial and research systems. They are high-quality synthesisers and require far less

heuristically determined parameters. The main categories of this technique are concate-

native synthesis and parametric synthesis. The concatenative appoach actually plays

back pre-recorded speech samples in the order that the utterance requires. Parametric

synthesisers are more flexible, and the method of parametrisation can be easily modified.

The mainstream system for parametric synthesis is the HMM-based, which uses methods

similar to those defined in automatic speech recognition, thus the adaptation of proposed

methods in both fields can be interchangeable.

Prosody control aspects are presented for each of the methods underlining the advan-

tages and disadvantages resulting from them. It is clear that prosody control is still a

debatable subject in each of the methods, as a full correct prosodic model, has not yet

been defined. HMM-based synthesis offers the easiest way of controlling the intonation

without the need of modifying the rest of the parameters.

In the final section of this chapter, the available text-to-speech systems available for

Romanian are enumerated. Best results are of course obtained by the commercial sys-

tems with unit selection methods. It can be seen that there is a lack of freely available

high-quality synthesisers for research purposes. This concluding in the choice for one of

the topics for this thesis, as an HMM-based Romanian speech synthesisers with all the

resources made available and a full documentation of the method of implementation.
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Chapter 3

Resource Development for a

Romanian Parametric Speech

Synthesiser

3.1 Introduction

Any text-to-speech system requires a language-dependent acquisition of resources in the

training and development stages of both the text processor and the speech synthesis parts.

Resources are essential for the understanding of the particular phonological phenomena

and lead to a higher quality of the resulted system. The influence of the available resources

for a specific language, can be stated as follows. Text resources influence the resulted

speech through:

• correct phonetic transcription of the input text;

• valid accent positioning;

• text normalisation;

• correct phrasing and pause assignment;

• the possibility to synthesise various text styles;

• in some advanced speech synthesisers, the focus of the utterance is established by

semantic analysis.

While the speech resources enhance the speech synthesis by:

17



Chapter 3. Resource Development for a Romanian Parametric Speech Synthesiser

• the possibility to synthesise any valid succession of letters/phonemes in the selected

language;

• the correct estimation of the parametric models – for parametric synthesis;

• multiple prosodic models for the same phoneme– parametric synthesis;

• sufficient unit and prosodic choices – in concatenative unit selection;

• lack of concatenation errors – for concatenative synthesis.

In the context of resource availability, Romanian is considered to be an under-resourced

language. Several research groups devote their efforts into building solid tools and re-

sources for the study of the Romanian language. Unfortunately, most of the times, these

elements are not visible, standardised or public.

For promoting Romanian speech technology research, especially in speech synthesis,

it is therefore essential to improve the available infrastructure, including free large-scale

speech databases and text-processing front-end modules. This thesis provides a set of

freely available, web-advertised resources and demonstrations developed for the purpose

of a Romanian text-to-speech system. The resources are not optimal, but as the results

show, they can be successfully used for a parametric HMM-based TTS system.

3.2 Text Resources

The resources described in the following sections comprise the tools, resources and pre-

processing of data that lead to the Romanian HTS labeller used in the speech synthesis

system. Text processing is one of the most challenging aspects of any TTS system in a

new language. The great variability among different language groups and local specific

alterations to standard spelling or grammar make it an important and vital part of any

TTS system.

For Romanian, there are a few projects and publications regarding text processing,

such as [Frunză et al., 2005] or [Giurgiu and Peev, 2006]. [Frunză et al., 2005] is an adap-

tation of the BALIE system for Romanian, which includes language detection, tokenisa-

tion, sentence boundary detection and part-of-speech tagging. [Giurgiu and Peev, 2006] is

an elaborate description of the building of a Romanian TTS system, RomSyn. It includes

phonetic transcription and some intonation patterns derived directly from text.

18



3.2. Text Resources

For the purpose of this study, a new text processor was developed, based on the

Cerevoice development framework (CDF) [Aylett and Pidcock, 2007]. Language-dependent

data has been gathered and probabilistic models have been trained; the front-end outputs

HTS format labels comprising 53 kinds of contexts [Zen et al., 2007a].

3.2.1 The Text Corpus

The first step in the development of the front-end of the speech synthesiser was the

acquisition of a large text corpus used in the training of individual components. Between

August 2009 and September 2009, 4506 newspaper articles containing over 1,700,000

words were trawled from the online newspaper ”Adevărul”.

Table 3.1: Top 40 most frequent words of the text corpus and their relative frequencies

Word Frequency [%] Word Frequency [%]

de 5.31 am 0.44

şi 3.38 ce 0.40

a 3.23 al 0.39

ı̂n 2.82 mii 0.37

la 2.10 fi 0.35

să 1.35 va 0.32

o 1.35 sunt 0.32

cu 1.26 ca 0.30

din 1.24 dar 0.27

care 1.11 după 0.26

pe 1.03 lui 0.26

că 1 e 0.25

nu 0.97 iar 0.22

au 0.93 sau 0.21

pentru 0.91 vor 0.21

mai 0.87 ar 0.19

un 0.84 dacă 0.18

se 0.79 ne 0.18

fost 0.58 le 0.17

este 0.56 prin 0.17
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Because of the lack of uniformity between the writing styles of different authors and

of the use of HTML tags within the text, some preprocessing of the text had to be carried

out. This included diacritic normalisation1, correct spelling and exclusion of embedded

tags for links and videos. The result was a collection of short newspaper articles – 15

rows on average.

From the entire text corpus the top 65,000 most frequent words have been selected.

These comprise the lexicon, which has been later phonetically transcribed and the ac-

cent positioning has been inserted. The 65,000 words were checked against the DEX

online database [DEX online-webpage, 2011]. This means that all of the words exist in

Romanian, have a valid spelling and there are no proper names or neologisms within the

lexicon. The 65,000 words represent 4% of the total number of words existent in the DEX

database. The top 40 most frequent words with their relative frequencies are presented

in Table 3.1. It can be observed that, as expected, the top 40 include mainly prepositions

and common verbs, in accordance with [Vlad and Mitrea, 2002].

3.2.2 Phonetic Transcription

Phonetic transcription represents the key starting point for a text-to-speech system. It

determines the correct pronunciation and has a direct impact on the speech corpus design.

The first step is of course to establish the phonetic inventory. The Romanian phonetic

inventory generally consists of 7 vowels, the short vowel i, 4 semivowels and 20 consonants.

However, linguists extend this set of phonemes, by the inclusion of allophones and rare

case exception pronunciations [Giurgiu and Peev, 2006].

Several phonetic transcribers have been presented in the works of [Domokos et al., 2011,

Toma and Munteanu, 2009, Burileanu et al., 1999] and [Ordean et al., 2009]. The meth-

ods used are various rule-based or semi-statistical approaches, and take into account an

extended list of phonemes and allophones for Romanian.

A big advantage in using HTS, is that through clustering some of the phonemes may

determine classes correspondent to their allophones, thus eliminating the need of an ex-

tended phonetic vocabulary. This leads to the reasoning behind the approach presented

in this thesis, which uses only 32 phonemes. Table 3.2 shows the phone set used in the

1In Romanian there are two standards for the ş and ţ letters, one with cedilla and one with comma.
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Table 3.2: Phone set used for the phonetic transcription, in SAMPA notation.

vowel a @ 1 e i o u i 0

semivowel e X j o X w

nasal m n

plosive b d g k p t

affricate ts tS dZ

fricative f v s z S Z h

trill r

approximant l

silence/pause ‘sil’ ‘pau’

experiments in a SAMPA2 notation. The set of phonemes, presented also in Appendix

A, does not include allophones and rare case exceptions, but rather a minimal set which

suffices the needs of the TTS system.

Romanian is mainly a phonetic language and letter-to-sound rules are quite straight-

forward. However there are several exceptions, which occur mainly in vowel sequences,

such as diphthongs and triphthongs. Therefore a lightly supervised automatic learn-

ing method for letter-to-sound rules was adopted, as follows: From the text corpus, the

top 65,000 most frequent words were extracted. General simple initial letter-to-sound

rules were written manually by a native speaker. These rules were used to phonetically

transcribe the complete list of words. To deal with the exceptions above, the pronun-

ciations of 1000 words chosen at random were checked, and corrected where necessary,

by a native speaker. Using this partially-corrected dictionary of 65,000 words, letter-to-

sound rules were automatically learnt using a classification and regression tree (CART)

[Breiman et al., 1984]. The accuracy of the obtained model is about 87%, measured using

5-fold cross validation. A small additional lexicon was manually prepared to deal mainly

with neologisms, whose pronunciations are typically hard to predict from spelling. This

custom lexicon is first searched by the TTS system and letter-to-sound rules are applied

afterwards. The complete list of letter-to-sound rules written in Festival format can be

found in Appendix B. Some further particular rules were added in the lexicon manually.

2Speech Assessment Methods Phonetic Alphabet
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Some examples of phonetic transcription using the phone set presented in Appendix A

are the following:

inedite i n e d i t e

george dz e o@ r dz e

excursie e k s k u r s i e

foarte f o@ a r t e

3.2.3 Accent Positioning

Romanian has a stress accent, that generally falls on the rightmost syllable of a prosodic

word3. While a lexically marked stress pattern with penultimate stress exists, any mor-

phologically derived forms will continue to follow the unmarked pattern [Chitoran, 2002].

However, the online SQL database of the Romanian Explicative Dictionary (DEX:

http://dexonline.ro/) provides accent positioning information. Using this information

from DEX directly, an accent location dictionary for the 65,000 most frequent words in

the text corpus was prepared. In the resulting TTS system, the same lightly supervised

algorithm as in the case of phonetic transcription, is used for the accent positioning.

3.2.4 Syllabification Using the Maximal Onset Principle

Romanian syllabification has 7 basic rules, which apply to the orthographic form of the

words. But these can be affected by morphology, such as compound words or hyphenated

compounds.

The CDF uses for syllabification, the Maximal Onset Principle (MOP), which states

that intervocalic consonants are maximally assigned to the onsets of syllables rather than

the coda, in conformity with universal and language-specific conditions. MOP has been

evaluated for most of the European languages and attains an average accuracy of over

70%.

The MOP has not been previously applied to Romanian. In order to use this principle,

onset consonant groups and vowel nuclei have been defined. A partial evaluation was

3The root and derivational material, but excluding inflections and final inflectional vowels
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performed on 500 random manually syllabified words.The MOP principle was applied

and attained an accuracy of 75%.

One of the major exceptions occurs in the vowel-semivowel-vowel groups, where both

the vowel-semivowel and semivowel-vowel group can be a diphthong, thus a nuclei. For

example, the word caiet contains the vowel groups a-i and i-e, which can be both diph-

thongs. This affects the syllabification as the result of the MOP application leads to the

syllabified form cai-et.

Another important exception is represented by the compound words, where the syl-

labification is based on morphological decomposition and not the standard rules. But this

cannot be addresses in either the 7 basic rules, not the MOP, because it requires a higher

level knowledge, including word decomposition or lexemes.

3.2.5 Part-of-Speech Tagging

Part-of-Speech (POS) tagging is mainly used for word disambiguation, phrasing or focus

assignment. The latest methods include elaborate statistical methods and some artificial

intelligence [Naseem et al., 2009]. For Romanian, [Tufis et al., 2008], [Frunză et al., 2005]

and [Calacean and Nivre, 2009] describe preliminary results but their resources are not

available. There is, however, a freely available online tool using an HMM-based POS

tagger [Sabou et al., 2008]. The work has not been published in any scientific journal or

conference, but the authors report in an internal evaluation that the accuracy of the POS

tagger is around 70%.

Using this tool, the entire text corpus was split into sentences and POS tagged. No

additional evaluation has been performed and thus, only two categories have been used in

the output of the text processor: feature – which includes nouns, verbs, adjectives and

some adverbs – and content – the rest of the words.

3.2.6 The Lexicon

As a side development of the text resources, the phonetic transcription and accent posi-

tioning have been gathered in a so-called lexicon. The list of top 65,000 most frequent

words in the text corpus have been phonetically transcribed using the list of phonemes

presented in Appendix A. Along with the phonetic transcription, the accent position was
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inserted for each word, using the DEX online database [DEX online-webpage, 2011]. An

example entry in the lexicon is shown below, and an extended extract from it can be

found in Appendix C.

abandoneze a0 b a0 n d o0 n e1 z e0

All the vowels and semivowels have an accent marker attributed, with ”0” and ”1” as

possible values. ”1” marks the accent. There can be only one accent in each word.

3.3 Speech Resources

As well as text resources, speech resources for Romanian are scarce. There are some

limited speech corpora, such as [Teodorescu et al., 2010] which is a small collection of the

Romanian sounds (vowels, consonants, diphthongs and triphthongs) and a few sentences

read with different emotions and by different speakers. In [Kabir and Giurgiu, 2010] the

development of the Romanian version of the GRID corpus [Cooke et al., 2006]. Some

several other small speech corpora are presented in [Giurgiu and Peev, 2006], [Bodo, 2009]

and [Ferencz, 1997]. All of the databases have been built for a particular purpose and

cannot be properly applied to other systems.

For any text-to-speech system, the speech resource is the key feature. If for the text

processing some aspects can be left aside, such as normalisation – presuming the user will

not input certain characters or will not expect the correct output for a foreign address –,

the vocal database cannot be poorly designed.

The following sections describe the steps taken in the development of a high-quality

speech corpus, with broad applications. The text selection mechanism is presented, as

well as recording setup and speech annotation. The last section introduces a series of

statistics based on the text used for the recordings.

3.3.1 Text Selection for the Recordings

The initial purpose of the speech corpus was to be as flexible and as extended as possible.

The idea was to be able to use this corpus in a multitude of scenarios, from automatic

speech recognition, to diphone and unit selection concatenation synthesis and of course for
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HMM-based parametric system. One of the major requests of a concatenative diphone-

based systems is the diphone coverage 4. This requirement was achieved by recording a

set of utterances which comprise multiple occurrences of the same diphone, and if possible

all of the diphones of the language. The utterance selection for Romanian was performed

using CDF. A list of the Romanian diphones with at least 10 occurences in the words of the

DEX database was developed. The number of diphones used is 731. Each phoneme had

to appear in 3 contexts (first, middle and end of word), and each context 3 times. CDF

uses a greedy algorithm to select the best utterances, i.e. maximum number of required

phonemes per utterance. Unfortunately, the algorithm failed to achieve these conditions

because of the small text corpus. However, a set of 1000 utterances were selected5. A

short excerpt of them is presented in Appendix F and combines two subsets, diph1 and

diph2 with 500 utterances respectively.

A great advantage of the HTS system is the possibility to create a fairly natural

synthetic speech with a limited amount of speech with almost no preprocessing or selection

methods involved. In order to test this hypothesis, a set of 1500 random utterances

selected from the newspaper text corpus was also recorded. This corpus is split into 3

subsets rnd1 , rnd2 and rnd3 , each containing on average 500 utterances. Some of the

random utterances are listed in Appendix G.

Initially, speech corpora for speech processing consisted of narrative texts, because

of their availability and use of language. To comply with this specification two short

fairytales ”Povestea lui Stan Păţitul” and ”Ivan Turbincă” by Ion Creangă, were

also selected to be recorded. The choice was also made for the variation of prosodic

patterns in the reading of such texts. Each of the two fairytales was split into utterances

and read individually. They amount to 407 sentences for Povestea lui Stan Păţitul and

297 for Ivan Turbincă. A sample utterance segmentation is presented in Appendix H.

The sentences presented above, random, diphone coverage and the two fairytales,

represent the training set for the speech synthesis system. For testing purposes, three

additional sets of utterances have been developed. These include 210 random news-

paper sentences, 110 fairytale sentences and 216 semantically unpredictable sentences.

The fairytale sentences were selected at random from the narrative texts freely available

4The speech corpus must comprise all possible combinations of phonemes in a language
5An analysis of their diphone coverage is presented in section 3.3.6
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at http://ro.wikisource.org/wiki. The semantically unpredictable sentences devel-

opment is presented in the next section, as they represent an important part for the

evaluation of a text-to-speech system.

3.3.2 Semantically Unpredictable Sentences

The Semantically Unpredictable Sentences (SUS) have been introduced as a compulsory

part in the intelligibility evaluation of the TTS systems [Benoit et al., 1996]. The idea

is that the human listener should not make educated guesses for a heard word based on

the context, or the semantics of the phrase. For example if we would say The grass is

green, even if the listener would not fully understand the word green, he would make a

probabilistic assumption that the last word is green.

Given the hypothesis presented above, the SUS is a sentence which is grammatically

correct, but has no semantic meaning. For example, The rock listens to the garage.

In order to create such a set of sentences, there are a few guidelines presented in

[Benoit et al., 1996]. The first step is to determine a few semantic patterns for the future

sentences. The patterns selected for Romanian are shown in Table 3.3 and the categories

represent:

• Sbst - noun

• SbstM - masculine noun

• SbstF - feminine noun

• VbIntranz - intransitive verb

• VbTranz - transitive verb

• Prep - preposition

• Conj - conjunction

• WhWd - interrogative adverb, cum, când, unde, cât

For each of the semantic categories, a list of frequent words is then selected. The

Romanian sets add up to 620 words. In each category the number of words is computed

according to the equation below:

{the number of words in each category} = {the occurrence number of its category in the

semantic patterns} X {the number of sentences for each of the semantic patterns}
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Table 3.3: Semantic patterns for the Romanian SUS. The last column represents the
number of syllables already present in the sentence.

Word1 Word2 Word3 Word4 Word5 Ending No. of
mark syllables

{Sbst} {VbIntranz} {Prep} {SbstM} {AdjM} . 0
{Sbst} {VbIntranz} {Prep} {SbstF} {AdjF} . 0
{SbstM} {AdjM} {VbTranz} {Sbst} - . 0
{SbstF} {AdjF} {VbTranz} {Sbst} - . 0
{VbTranz} {Sbst} {Conj} {Sbst} - . 0
{WhWd} {VbTranz} {Sbst} {SbstM} {AdjM} ? 0
{WhWd} {VbTranz} {Sbst} {SbstM} {AdjM} ? 0
{Sbst} {VbTranz} {Sbst} care {VbTranz} . 2

The sentences are selected so as to minimise the length of the sentence. This is

important because the memory of the listener should not be tested as well. An average

number of 5 words/sentence has been shown to be sufficient in the context of the listening

test. The length of the sentence is also given by the number of syllables, thus the necessity

to specify the number of syllables already present in the sentence for the preselected

words6. In the development of the sentences, also the words are not repeated, thus the

relation presented above.

The complete list of the Romanian semantically unpredictable sentences can be found

in Appendix I.

3.3.3 High Sampling Frequency Recordings

After the text selection for the recordings, the next step was of course recording it. The

recordings were performed in an hemianechoic7 chamber at the University of Edinburgh,

Center for Speech Technology Research. Since the effect of microphone characteristics on

HTS voices is still unknown, three high quality studio microphones were used: a Neumann

u89i (large diaphragm condenser), a Sennheiser MKH 800 (small diaphragm condenser

with very wide bandwidth) and a DPA 4035 (headset-mounted condenser). Fig. 3.1 shows

the studio setup. All recordings were made at 96 kHz sampling frequency and 24 bits

per sample, then down sampled to 48 kHz sampling frequency. This is a so-called

6Such as care in pattern 8.
7anechoic walls and ceiling, floor partially anechoic
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Figure 3.1: Studio setup for recordings. Left microphone is a Sennheiser MKH 800 and
the right one is a Neumann u89i. The headset has a DPA 4035 microphone mounted on
it.

over-sampling method for noise reduction. The oversampling by a factor of 4 relative

to the Nyquist rate (24 kHz) and down sample to 48 kHz, results in the improvement

of the signal-to-noise-ratio by a factor of 4. For recording, down sampling and bit rate

conversion, ProTools HD hardware and software was used.

The speaker is a native Romanian female. 8 sessions were conducted over the course

of a month, recording around 500 utterances in each session. At the start of each session,

the speaker listened to a previously recorded sample, in order to attain a similar voice

quality and intonation. The prosody used for the diphone coverage and random sets was

as flat as possible, while the fairytales were read using a more dynamic, narrative-like

intonation style.

3.3.4 Speech Data Segmentation and Annotation

After the recordings were performed, the utterance level segmentation was conducted. All

of the approximately 4 hours of recordings, both the training and the testing sets, were

manually annotated at utterance level and segmented using Wavesurfer8. Some of the

sentences were left aside due to clipping or incorrect pronunciations.

8http://www.speech.kth.se/wavesurfer/
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Table 3.4: Phonetic coverage of each subset of the training corpus.

Subset Sentences Size [min] Diphones Diphones/ Quinph. Quinph./

sentence sentence

Random 1493 104 662 0.44 41285 27.5

Diphone 983 53 706 0.71 26385 26.3

Fairytale 704 67 646 0.65 29484 29.4

The resulted training speech corpus has 983 diphone coverage sentences with a total

length of 53 minutes, 1493 random sentences of 104 minutes and the fairy tales have

been segmented into 704 utterances amounting to 67 minutes.

The test corpus is comparably small, with a total duration of 28 minutes. It comprises

210 random newspaper utterance with a duration of 13 minutes, 110 randomly selected

fairytale utterances – 8 minutes and 216 SUS amounting to 7 minutes.

Table 3.4 shows the total number of different diphones and quinphones in the training

subsets. Diphones are the typical unit used for concatenative systems and quinphones are

the base unit for HMM-based speech synthesis systems. A larger number of types implies

●●●●●●

●

●●
●
●●●●

●
●●

●●●●●

●●●

●●

●

●●●●●●●●●●●●●●

●

●●●
●●
●●●●●●●
●●●●
●●●●
●

●

●
●
●●
●●●
●
●
●
●●

●
●
●
●

●●●
●●●
●●●●●●
●●
●●
●

●●

●
●
●
●●●

●

●
●

●●

●●
●
●
●
●

●●●
●●
●●●
●

●
●●●●●
●●●
●●
●●
●●
●●●●●●
●
●

●
●
●
●
●●●
●
●
●●●●●●●
●●
●●
●●
●●
●●●
●●

●
●
●

●●
●

●

●●
●●●●●●●
●
●●●●●●●●●●●●●●

●

●
●
●

●
●●
●●
●

●

●
●
●
●
●
●
●
●
●●●●●●
●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●

●●
●●●●●●●
●●
●
●●
●

●
●
●
●
●●●
●●●●●
●●
●●●●●●●●●●

●●●
●●

●

●

●●●●●●●●●●●●●●●●

●

●
●●●●
●●●●
●●●

●●

●
●●●●●●●

●●●
●●●●
●●●
●●●●●
●
●●●

●

●●
●●●●●●●
●●

●
●
●●●●

●●
●
●●
●●●●
●●●●●●●●
●●
●●

●
●●●●●●●●

●

●●
●
●
●

●
●●
●
●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●

●

●
●●
●●
●
●

●●
●
●

●
●
●●
●
●●●

●●
●
●●
●
●●

●
●●●

●
●
●●●●●
●
●
●
●●●●
●
●
●●
●●●●
●●●●

●
●
●●●●●●
●●
●
●
●
●

●●●●
●

●●●●
●●●●

●

●●●●●●●●●●●
●●
●
●●●●●●●●●
●●●●●
●
●●●●●●●●●●●●●●●
●
●●
●
●

●

●

●

●

●

●

●●●●●●●

●
●
●

●

●
●

●

●
●●●●●●●●●●●●●●●●●

●
●●

●
●●●●●●●●
●
●●●
●
●
●
●
●●●●
●●●●●
●●●●●●●●●●

●●●●●●●●●●
●
●●●
●●●●

●

●
●●
●●●
●●●●●●●●
●●
●●●●
●●
●●●●
●●
●
●

●●
●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●
●
●●●●

●
●●●●●●●
●●
●
●●●
●
●
●

●

●
●●●
●
●

●

●●●●●
●●●●●
●

●

●
●

●●●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●

●
●
●
●●●●●●●●●●

●●

●
●●●●

●●●
●●●●●●●●●
●
●●●●●●
●●●●●
●●
●
●
●●●●●●●
●●●●●

●
●●●●●●●●●●●
●●●●●●●●●
●
●●●●
●●

●

●●

●
●
●●

●
●●●●●●●●●●●
●●
●●●●●●●●●●●●
●
●
●●●●●●●

●
●
●
●●●
●

●
●
●
●●

●●●●●●
●●
●●
●

●

●

●●●●●●
●
●●●●●
●

●

●●●

●

●●●●●

●

●●●

●

●●●●
●●●●●●●

●

●●●●●●
●●●●●●●●●●●●●●●●●
●●
●
●
●●
●

●

●
●

●

●●●●●●●●●●

●●
●
●
●●●●●

●

●●
●●

●●●●
●●●●
●

●●●●
●
●●
●●●●
●●
●●●●●●●●
●●●
●●
●

●

●

●
●
●●
●●●●●●●●●
●●●●●
●●●●
●●●●●
●
●
●●
●●●●
●●●●●●●●●●●●●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●●
●
●
●●●●●
●
●
●●●●
●
●
●●
●●
●●●
●

●
●

●
●●●●●●●

●
●●●●●●●
●●●
●●●●●
●●●●●
●●●●●●●●●●●●
●●●●●

●●
●●●
●
●
●
●
●
●
●●●
●

●
●
●●
●
●
●
●●●●
●●●●●●●●●●●●
●
●
●
●●●●
●●●●●●●●●●●●●
●●
●●●●
●●●●●●●
●●●●●●●●

●

●

●●●●●

●
●●●●●●●

●●
●
●
●
●●●
●
●●●●●●●●●

●

●
●
●●
●●●●●●●
●
●
●
●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●●●●●

●

●
●●
●
●

●

●
●●
●
●●●
●
●
●●●●●●●
●●
●●●●●●●
●●●●

●

●●

●

●
●
●●●

●
●●

●
●
●
●●
●●●●●●●

●●●
●
●●●●●●
●●●●●

●
●●

●

●

●

●
●●●●●●●●●●●●●

●

●●●●●●●●●

●●

●●●

●
●●

●
●●●●
●
●

●
●

●●●●●●
●
●●●●●●
●●●●●●

●
●
●

●

●●●

●●
●
●●●
●●●

●

●
●
●●●●

●

●

●
●●

●●
●●●●●●●

●
●

●
●●

●●
●

●
●

●●●●
●
●●

●●

●

●
●●
●●

●
●●
●●●
●

●●●
●●●●
●●●●

●●
●
●
●●●

●

●●●●●●●
●●●●●
●●●

●

●
●
●●
●●●
●●●
●
●
●●

●●●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●

●

●

●●

●
●●
●●●●●●●●

●●

●●●●
●●●●●●●●●
●
●
●●●●●●●●●●
●
●●
●●●●●●●●●●
●
●●

●
●
●●●●●●●●●●●●
●●●
●
●

●●

●

●
●●●
●
●●●
●
●
●●●

●
●

●●
●●●●●

●●●●●●●
●●●
●●●●●●●●
●●
●●
●●●●
●
●●●
●●
●●●

●

●
●●●●
●●●●●●●●●●●
●●●●

●

●
●●●●●●●
●●●●●
●●
●
●
●●
●●●●●●●●
●●
●●
●●●●
●

●●●●●●
●●●●●●●●

●
●

●●●●●●●●
●
●
●

●●●●

●
●●●●●

●

●
●●
●

●

●●

●●
●
●

●●●
●●●●

●
●
●
●

●
●
●●
●●●●●●●●●●
●●●●●●●●●●
●●

●

●
●

●
●

●
●●
●●
●
●●
●●●●
●●●●
●●●●●●
●
●●

●
●●
●●●●●●●●●●●●●●
●●
●●●
●
●●●●
●●●●●●●●
●●●
●●
●●
●●
●

●
●
●
●
●●
●●

●

●●
●●●●●●●●●●●●
●●●●●●●●●●

●
●
●●●
●

●●●●●●●●●●●●●
●●●
●
●
●●

●
●●●
●●
●
●
●●
●
●
●
●

●
●
●●●
●●●●

●●
●
●
●
●
●
●
●●●●

●
●●●●●●●
●

●●●
●●●●●●●●●●●●●

●●
●
●
●●●●●●●●

●

●
●
●●●●●
●●●●●●●●●●●●●
●
●●
●
●●
●●●
●●●●
●●●●
●●●●●●●
●
●

●
●

●●●●

●
●
●●

●
●●

●

●
●●
●
●
●●●●●●
●●●●
●●●●

●

●●●●●●●
●●●●●●●
●●●●●
●

●

●●●●●●●●●
●
●
●●
●●●●●●●●
●●●●●●●●●
●●

●●

●

●
●●●●●●●●●
●●

●●●●●●●
●
●●●●

●●●●●●●●●●
●
●
●●●
●
●●
●
●
●

●
●●
●●●●
●●

●●
●●●●●●●●●●●●●●●●

●●
●●●●
●●

●

●

●

●
●●
●●
●●●
●

●

●
●●
●
●●●●●●●●

●●

●●
●●●
●

●●
●●●●●●
●●
●●

●

●

●
●●
●

●
●
●
●
●●

●

●

●
●
●

●●
●●●●●●●●
●
●●●●●●●●●●
●

●
●●●●
●●●●●

●●●
●
●
●

●
●●●●
●
●
●●
●●●●
●●●
●●●●

●●●●●●●●●●

●

●
●

●●●
●●

●
●●●
●●
●●

●

●●●●●●●
●
●

●

●●●

●

●●

●
●
●●●●●
●
●●●●●●●●●●
●●

●

●
●●●
●
●●●●●●●●
●●
●●
●●●●●●●
●

●

●●●●●
●●
●●●
●●

●
●●●●●●●●
●●●●●●
●
●

●●●●●●●●●
●●●●●●
●
●
●
●●●●●●●●
●●●●●●●●●●
●●●●●●
●●●
●●●

●
●●

●●●
●●●●●
●●●●●
●●●●
●●●
●
●●●●
●
●●●
●
●●●●●

●

●

●

●●●●●●
●●●●●●●●

●●●

●●●

●
●

●

●●

●
●
●

●
●

●●
●

●

●●●●●●

●●

●●●●●●●
●
●●
●

●
●

●
●●

●

●●●●●●●●●●●●●●●●●●●●
●●●●●●

●

●

●

●●●

●

●

●
●

●

●●
●

●
●●●

●

●●●●●●●●●●

●●

●●

●●

●●

●●

●

●
●●

●●●

●●

●

●●●●●

●
●
●

●●
●

●

●●
●●

●●●
●●
●●●
●
●●●●
●●●●

●
●

●

●

●
●
●●●●●●●

●

●
●
●
●

●

●

●●
●●●●
●
●

●
●●●●

●●●●●●●●
●●●●●●●●●●●●
●●●●
●
●●

●●●

●●●●●●●●●●●●●

●

●
●●●

●●●●

●●●●●●

●

●●

●
●●
●●●●●
●
●●●●●
●●●●●
●
●
●
●●
●

●●●●
●●●●●

●

●●●●

●

●

●

●●●

●●●●●●●
●●
●●
●●●●
●●●
●

●●

●●●●●●
●●●●●●●●●●●●●●●●
●●
●●●
●

●

●●

●●

●
●●
●

●

●
●●●●
●

●

●

●●●●●●

●●

●
●
●●●●
●●●●●●●
●

●

●
●●●
●●●

●
●

●

●

●●●●●●
●

●●

●
●●●●●
●

●●●

●●

●
●

●
●
●●

●
●●
●●
●●●
●

●

●

●●

●

●

●
●●●●●●●●●●●●●●

●

●●●

●

●

●

●

●
●
●
●●●●●●●●

●●

●●
●
●
●●●●●●
●

●

●●●●●●●●●●
●●●●

●

●●●●

●

●
●●
●
●

●●
●●
●

●●
●●
●●●
●●●●●●●
●
●

●●

●

●●●●●●

●

●

●●
●●
●●●

●●

●●●●●●●

●●

●●
●●●

●

●●●●●●●●●●●●●●
●
●●

●

●
●●

●
●

●●
●●●●
●●●●●●●●●●●●●
●●
●
●
●
●●●●
●
●●
●

●●

●

●●●●●
●
●
●●
●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●

●●●●●●●●●●●●●

●

●●
●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●

●●●●●

●●

●●●
●
●●

●

●●

●

●

●●

●●●●

●
●
●
●

●
●●
●●●
●●
●●●●●
●●●●●●●
●●●●●
●●●
●●●●●●●●●
●●●●●
●
●●●●
●●●●●

●●●
●
●●
●
●●●●●●●●●
●●●●●
●●●
●
●●●●●●●●●●
●
●
●
●●●
●
●

●

●●●●

●●
●●●●●●●
●●
●●●
●
●●●●●●●●●●●●●
●●●●●●●●●●
●●●
●●●●●
●
●●●
●
●

●●●●●●●●●●●

●

●
●
●●●●

●●
●●●

●●●●●●●●●●●●●●●
●

●

●●●●●●●●●●●●●●
●●

●●
●
●
●
●

●

●●
●●
●●
●●●●●●●●●●●●●●●
●
●●

●
●
●●●
●
●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●●●●●
●

●
●

●●●
●
●●●●
●●●●●●
●
●●
●●●●●●●●●●●
●
●●
●●●
●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●
●●●
●●●●
●

●
●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●●●●●
●●
●●
●●●
●●
●●●●●●●
●

●

●

●●●
●●●●●●
●●

●●
●●●●●●
●●●
●●
●●
●
●
●
●

●

●
●
●
●●●●●●●●●
●
●●●●●●
●●●
●●●●●●●●
●
●●
●●●●
●
●●
●●
●●●
●●●
●●●●●●●●●

●

●
●
●●
●●
●●
●●●●●●●●●●●

●
●●●

●
●
●
●●
●●
●●●●●

●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●
●●●●

●

●●●●●●●●●●●●
●●●●●●●
●
●
●●●●●●●●●●
●●
●●●●●●●●●●
●●●●●●●●●●●●

●

●●●●●●
●●●●●●●●●●
●●●●●●
●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●
●
●●●

●

●●
●●●
●●●
●●●●●●●●●●●●●●
●

●

●●●

●

●
●●●●●

●
●●
●
●●

●

●

●
●●
●
●●●●●
●●●●●●

●
●

●

●

●●

●●●●●●●●●●
●●●●●●●
●●●
●

●●●●●●●●
●●
●●
●●

●●●
●
●
●

●

●

●
●●●●●●
●●●●
●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●
●
●●
●
●

●●●●●

●
●●
●
●●●●●●●●●
●

●●●●●
●●
●
●●●●●●●●●
●●●●●●●●●●●●
●●●●
●
●
●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●

●
●
●●●●
●●●●●
●
●

●●●

●

●●
●●●
●
●●
●
●

●
●
●
●
●

●
●
●●●
●
●●

●●
●

●●●●●●●●●●●
●●●●●●●●●
●●●●●●
●
●●
●●●

●
●

●●●
●
●●
●
●

●●
●●●
●●●●●●●●●●●●
●●●
●
●
●●●
●●
●
●●
●●●●●●●●●●
●●

●●●●
●●●●●●●●
●●●●
●
●●●
●

●
●
●●●●●●●●●●●●●●●
●
●
●
●
●●

●●
●
●●●●●●●
●●●●●●●●●●
●●●●●●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●
●●
●

●
●
●

●
●

●●
●●●●●●
●●●●

●
●

●●
●
●●●●●●●●●●●●●●●●●
●●
●●●

●
●●
●●
●
●
●●
●
●

●
●●

●●
●●●
●●
●●
●●●●
●●●●
●●●●●●
●●
●●
●●
●
●
●
●●●●●●●
●●●
●
●●●●●●●●●●●●
●●●
●●
●●
●

●

●
●●
●
●●●●
●
●
●
●

●

●

●

●●●●●●●●

●●●
●●●●●●●●●●●
●●
●●
●●●●
●●●●
●●●●●●●●●●●●●
●●●●●●●●●●
●●●
●
●
●●●●
●●●●●●●●●●●●

●●
●
●●
●

●

●

●
●

●●
●

●
●

●

●●
●
●
●
●●●●●●●●●●
●●
●●●●
●●

●
●●●
●●
●●
●●●●●●●●
●●
●●
●

●●

●
●●●●
●
●

●
●
●
●
●●●
●●
●
●●
●

●
●
●
●●●●●●●●
●

●

●
●●
●
●●
●
●●

●
●●
●●●●●●●●●●●●●●
●

●

●●●●●●●●●●●
●
●●
●
●
●●
●
●
●●●●●

●

●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●
●●●●●●
●●●

●
●●●●●●●●●●●

●
●
●

●

●●●●
●●●●●●
●●●●●●●●●●
●

●

●●●

●

●●●
●●●●●●●●●●●●●●

●

●
●

●

●●

●
●●●●
●
●●
●●●●

●●●●●●●●●●

●
●●●●●●●●●●●●●●
●●
●●●●●●
●
●●●●●●●
●
●

●●
●●●●●●●●●●●●●●●

●●
●●●●●●●●
●
●●●●●
●●●●
●●
●

●●
●●●

●
●

●●●
●●

●●●●●●●●●●●●●●●●●●
●
●●●

●
●●●●●●●●●
●●●
●●●●●●●●●●●●●
●●●
●●

●

●
●●●●●
●●●●●●●●

●
●
●●
●

●
●
●●●
●
●

●●
●

●●●
●●●●●●●●●
●

●

●
●
●●

●
●●

●●
●
●

●●

●

●
●●●●●●●●●●●

●●●
●●●●

●
●●
●
●●●
●●
●
●●
●

●●●●●●●●●●●●
●●●●●●●●●
●●●●●
●
●
●●●●●●●●●●●●●●●●●
●
●●●●●●●
●
●

●

●
●●●●●●●●●●●
●●
●

●
●

●
●●
●●
●●●●
●●
●●●
●●●●
●
●●
●

●
●
●
●●

●

●
●
●
●●●●●●●●●
●●●
●
●●
●
●
●
●●●●
●●
●●●
●

●

●●●●●●●●
●●●●●●●
●
●
●●●
●

●●

●

●

●
●
●●●●●●●●●●●●●●●●●●●●●
●
●●●

●

●●●●●●
●●●
●●●●●
●●●●●●
●

●
●
●●●
●●●
●

●●●●●●●●●●●●●
●●●●

●

●
●●●●●●
●
●●●●●●●

●
●
●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●

●
●●●●●●●●●●●

●
●

●
●
●●●●●●●●●●●

●
●●●●●●●●●

●●●
●
●●●
●●

●
●
●●●
●●
●

●
●
●
●
●●●●●●●●●●●●●●●
●●●●●
●
●●●●●●●●●●●●●●
●●●●
●
●●●●●●
●
●●●●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●
●●●●●●●●●●

●

●●●
●●●
●●●
●●●
●
●●●●●●●●●●●●●
●●●●●●●●●
●

●

●

●
●●●●●●●●●●●

●●
●

●
●●
●●●●

●
●●●●●●●●●
●●
●●

●●
●●●
●●

●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●

●

●●●●●●

●
●
●●●●
●●
●●●●●●●●●●●
●●●
●●●●●●●
●●●●●●
●●●●
●
●
●

●●●●●●●●●●
●
●

●●●●●●
●
●●
●
●
●
●
●●●
●●●●●
●●●●●●●
●●●●●●●●●●
●●
●
●

●●●

●

●
●
●●
●●●●●
●
●

●●
●

●

●
●

●
●
●

●
●

●
●●●●●
●●●●●

●
●
●
●
●●
●●●●
●
●

●

●●
●●●●
●●
●●
●●●●
●
●●

●●●●●●
●●●
●●●
●●●●●●●
●
●●●●
●
●●●

●●
●●●
●●
●
●

●●●●●●
●
●●
●●
●
●●●
●

●
●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●
●●
●●●●●●●
●
●
●

●

●

●
●
●●●

●

●
●
●●●●●
●
●
●
●
●●
●●●
●

●●
●●
●

●●
●●●●●●●●●●●
●●●●●
●●●●●●●●●●●

●
●
●

●●
●●
●

●●●
●
●●
●●●●●●●●●●●●
●●●●
●
●●●●●●
●●
●●
●●●●
●
●
●

●

●●●
●●●●●●
●
●●
●
●●●●●●●
●
●●
●●
●●●●●●
●●

●

●
●
●
●●●●●●●
●●●●
●●●●●●●

●

●●●●

●

●

●●
●●
●●●●●
●●
●●

●

●

●●●
●
●
●●●●
●●●●●●●●
●
●●●
●

●●●
●●●●●
●

●
●●
●●●
●
●●●●●

●
●
●●●●●●●●●●●●●

●

●●●●●●
●●
●●
●
●●
●
●

●●●
●●
●●●●●
●●●
●●●●
●

●
●
●
●
●
●●

●

●
●

●●
●

●●●

●

●●
●●●
●
●

●●●
●
●●
●●●
●
●●●●●●●●●

●
●
●
●●●●●●●●●●●
●

●
●●
●

●●●●
●●
●●●●●
●●
●●●
●●●●
●●●●
●●
●
●
●

●●
●●●
●●●
●●●
●●
●●
●●
●
●
●
●

●
●●
●●
●●●●●
●
●

●
●
●●●●

●
●●●●●●●●
●●●●
●●●

●

●

●●●
●
●●
●●
●●●
●●●●●
●●●
●●●●●●
●
●

●●
●●●●●●●●●
●●●●
●
●●●●●●●●●●●●●●●●
●

●
●●

●
●●●●●●●●●
●●
●●
●●●●●●●●●●●●

●

●●
●●●●●

●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●
●●

●

●●●●●●●●●●●●●●●
●●
●●
●●
●

●●●
●●●●
●
●
●●
●
●●●●●●●●
●●●●

●
●

●●●●
●●●●●●●●●●●●●●●●
●
●●

●

●
●●●●●
●
●
●●●●
●
●●
●

●

●●●●●●●●●
●
●●
●●●●●●●●●
●
●
●●●●●●●●●●●
●●●
●●

●
●
●●●
●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●
●●●●●
●●
●●●●●●●●
●●●
●

●●●●●●●●●●
●●●●
●

●
●
●

●

●

●

●●●

●●
●
●●●●

●
●●●●●●●●●●●●●●●●
●
●
●

●●
●●●●
●●●●●●●●●●
●●

●
●
●●●●●●●

●●
●●●
●
●
●●●

●●●●
●●
●●
●●●●●●●●
●●

●●●●

●
●
●
●●

●

●
●
●
●

●●

●●●●●●●
●●

●●●●●●●●●●

●
●
●●●●●●
●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●●

●

●●
●
●●
●●●●●●●●●●●●●
●
●
●
●●●

●
●

●

●
●
●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●

●

●●●
●●●
●●●●●●●●●●
●

●●●●
●
●●●
●●●●●●●●●

●●

●
●●●●
●
●●●●
●●●●●●●●●
●
●●●●
●●●●●●●●●●●●●●●

●

●●●●
●
●●●
●
●

●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●
●
●●
●●●●●

●●●●

●

●●●●
●

●

●●
●●●
●
●

●●
●●●
●
●
●●
●
●

●●

●●●●●●●●●
●●
●

●

●●●●●●●●●●
●
●●●●●●
●
●
●

●

●●●
●
●●●●●●●●●●●●●●●●●●

●

●●●●●
●
●●●
●●●
●●●
●●
●●●●●●●●●●
●
●●

●

●●●●●
●●●●
●●●
●●●
●●●●●●●●●●●●
●●
●●●
●

●

●
●

●●
●
●

●
●●●●●●●●●●●●
●
●

●●
●●●●●●●●●
●●●●●●●●●●●
●
●
●●
●●●●
●●●●●
●●●●●
●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●
●

●

●
●
●●●

●
●●
●●●●●●●●
●
●●
●●
●
●●
●●●●●●●
●
●●●
●
●●
●●
●
●
●●
●●
●●●●
●
●

●●●●
●
●●●●●●●●●●●●●
●●
●
●●
●●●●●●
●●●●●●●●●●●●
●●●●●●●●

●
●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●

●

●●●●●
●

●

●

●●●●●●●●●●●●●●●●

●
●
●

●
●●●●●●●
●●●●
●
●●●●
●●
●

●

●●
●●●●●●
●●●
●

●
●●
●●
●●●
●●●●●●●●
●
●●●●●●●●●●●●●●●●●

●

●●
●
●●
●

●
●●
●●
●
●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●●
●●
●●●●
●●●●●
●
●
●
●●●
●
●

●●●●●
●●
●●●
●

●
●
●●
●
●●
●●●●●
●
●●
●●●
●
●

●

●●
●●●●
●●
●●
●●
●●
●●●●
●●●●●●●●●●●●
●●●

●

●●●●●●●●
●●●
●●●
●●
●●●
●

●
●●●
●
●
●

●●●●
●●●●●
●●●
●●
●●●
●
●
●●
●

●
●●●●●
●●●●●●●●●●●●●●
●●●●

●●

●●●
●●
●

●
●
●
●●
●
●
●
●●●

●

●
●●●●●●●●
●
●●●●
●
●●

●●●
●●
●●
●●
●●●
●●●●●●
●●●●●
●
●

●
●●

●
●

●

●●●
●●●●

●●●●●●●●

●●●●●●●
●●●●●●●●
●●●●●

●

●
●●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●
●●●●●
●
●●●●
●
●

●
●
●●●●●
●●
●●●
●
●●●●●
●

●

●
●
●
●●
●
●●
●●●●●●●●●●
●●●●
●●●
●
●
●
●●
●●
●
●
●
●●

●
●●●●●●
●●●●●●●●●●●●●●●●●●

●
●
●
●●●●●●●●●●●●

●
●●●

●●●
●
●●●
●●●●●●●
●●
●●
●●
●●●●●
●

●●●
●●

●●●●●●
●●●
●

●

●
●
●●

●●

●●
●●●●●●●●●●●●●
●●●●●●●●
●●●●●●
●●

●●
●●●
●●

●
●●
●●●●●●●●●●●●●
●
●●
●
●●●●●●●●●
●●●●●●
●●●●●●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●●●

●
●●
●
●●●
●
●●
●●●●●●●●●●●●●●●●●

●

●
●●
●

●

●●
●●●●●●●●
●●
●●●
●
●

●

●●
●●
●●
●●

●●
●●
●
●

●●●●
●●●●
●●●●

●

●
●●●●●●●●●●●●●●●●●●
●●
●

●
●
●●
●●●
●

●●●●●●●●●●●●●

●
●●●●●●
●●
●●●●●●●●
●

●
●

●
●
●●●●●●●●●●●●●●●
●●●
●
●●
●●
●

●

●●●●●●●
●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●

●
●●●

●●●

●●
●●
●
●●
●●●●●●●

●

●
●●●
●

●
●●
●
●●

●

●●
●●
●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●

●

●
●●●●●●●
●●●●
●●●●●●●●
●●
●●●

●

●●
●
●

●

●●●●
●●●

●
●
●●●
●●●
●●●
●●●●●●●
●●●●
●●
●●●
●●●●●
●
●●
●
●

●
●●
●●●●●

●●●●●●●●●●●
●●
●●

●
●●●
●●●●●●
●●●●
●●●
●●●●●●●●

●●
●●●
●●●●

●●●●●●●●●●●●●●●

●

●
●

●

●●●
●
●
●●
●
●●
●
●
●
●
●
●

●
●

●
●●
●
●●
●●●●

●
●●
●
●●
●

●●●●●●●●●●●●●●

●
●
●●●●●●●●●●●●●●●●
●●
●●●
●●●●●●●●

●●●
●
●●●●●●●
●●●●●●●●●
●●

●●●●●
●●●
●

●
●

●
●
●
●●●●●●●●●●●
●
●
●
●
●
●●●

●

●

●●●●●

●

●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●
●
●●
●●●●●●●●●●●●●●●●●●

●
●
●●
●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●

●●
●

●
●
●
●
●●
●●●●●●●●●●●●●●●●●●
●●●●

●

●

●●●●●●
●●
●
●
●
●
●
●●●●
●
●
●
●●
●●
●●●
●
●
●●●●
●●
●●

●
●●●
●
●
●

●
●

●

●●●●●●●●●●
●●

●

●
●●

●

●●

●

●●●●●●●●●●●●

●

●

●

●

●

●●
●●●●●●●●●

●

●

●

●●
●
●●

●
●
●
●●

●
●
●●●●●●●●●●
●●●●

●●
●
●●●●●●●●●
●●
●●●●●●●●●●●
●●●
●
●●
●●●
●
●
●●
●
●
●
●

●●
●
●
●●
●

●●●
●

●
●●
●
●●●●●●●●●●●●●
●
●
●●
●

●

●●
●●
●●

●
●
●●●●●
●●●

●

●

●●●●●●●●
●
●
●
●
●
●●
●

●

●
●●●●
●
●
●
●
●
●

●
●●

●

●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●

●
●●
●

●

●
●
●●●●●
●
●●
●●●●
●
●
●
●
●
●

●

●
●

●●●●
●●●
●
●
●

●
●
●
●
●●
●
●

●

●
●

●

●●●

●

●
●
●
●
●
●

●

●●
●
●
●●
●

●●

●●
●●●●

●

●

●

●
●●
●●
●
●

●●●

●●

●

●
●●

●
●●●

●

●

●

●●
●●
●●●●●●●●
●
●

●

●

●

●
●
●●●
●●
●●●
●

●

●●

●

●

●●
●

●●

●

●
●
●●●●●
●

●●●●●●●●

●

●●●●
●●

●

●
●●
●●●●●●●
●●●●●●●●●
●●
●●●●●●●●●●●●●●●
●
●
●
●●
●●●
●●●●●●●●●●●●
●

●
●●●●●●●
●●●●

●
●
●●●●●●
●
●
●
●
●

●
●
●●

●

●
●

●●●
●
●●●●●●●●●●●

●

●
●●●●●●
●●
●●

●●
●
●
●

●

●
●
●

●

●

●
●
●
●
●
●

●●●

●●●●
●●
●
●
●●
●●
●●●●●●●●
●●
●
●
●●●
●
●
●
●
●●●●
●
●
●
●●●
●●●●●●
●
●
●●●●
●●●●
●●

●
●
●
●●●●
●●●●●●●●

●
●

●●
●

●
●●

●

●

●
●

●●●●
●●●
●●●●●●●●●●●

●

●

●
●
●
●
●●●

●●●
●
●●
●
●●
●
●
●
●
●●●
●●●●●●
●●
●●
●●●●●●●●●●●●●●●●
●
●

●
●
●●●●
●
●
●
●●
●●●●●●●●
●
●
●
●●

●●●●
●
●

●●●●●●●●●●●●
●
●●●●
●
●●
●●
●●●●●●●●●●
●●
●

●
●
●●●
●●●
●●●
●●
●

●
●●●●●●●●●●

●

●●●●●●●●●●
●●
●
●
●
●
●●
●
●
●
●●●●●●●●●

●
●
●
●
●
●
●
●

●

●●●●●●●●●
●●●
●●
●
●

●

●●●
●●
●●●

●
●●
●●
●●
●●●●●

●

●

●
●
●
●●●●●
●
●
●

●

●

●
●●

●

●

●
●
●●●

●

●
●●●●●●
●●●●

●

●●●●●●●●
●●●
●
●
●●●●
●●●
●●

●
●

●

●

●
●●●●
●●●

●
●
●●●●
●●
●●
●
●
●
●
●
●
●●●●●
●●●

●
●●
●●●
●●●
●●●
●●●●●●●●●●●
●
●●●●●●●●
●

●

●●●●●●
●
●

●●●
●
●
●
●
●●●
●
●●●●●●●●●●
●
●
●
●●●

●

●

●
●
●
●
●●●
●
●
●●
●●●●●●●

●
●
●●●
●
●●●●●
●
●
●●●●●
●●●●●●●●●●●●●●●●●●
●

●●●
●
●●●
●●
●●
●
●

●
●
●●●●●●
●
●
●

●

●●●●●●●●●●

●

●
●●●●●●
●●●●
●●●●●
●●●●●●●●●●
●
●
●●●●●●●●●●●●●●●●

●●
●

●●

●

●●
●

●
●●
●●●
●●●●●●●●
●
●
●
●●
●●
●

●

●
●
●
●

●
●
●
●●
●●
●●●
●
●●●

●
●●●●●●●●
●●●●●●●
●●
●●●●●●●
●
●●●●●●●
●

●

●

●●
●●
●●●●●●●●
●●
●●●●
●
●
●
●
●
●●
●●●●●
●●
●

●
●
●
●

●
●
●
●
●
●
●
●

●●●●●●●●●●
●
●
●

●

●
●
●

●
●

●
●
●●
●●
●●●
●●●●●●●●
●
●●

●

●

●
●
●●●●●●●●

●
●
●
●
●
●
●●

●

●●●

●
●
●●
●●●

●●
●●●
●●
●●

●

●
●●●

●
●

●●●●

●
●●
●
●
●
●●

●●
●●
●●
●●
●●
●
●●●●●●●
●●
●●
●●●
●●●●●●●●●●
●

●
●●●●●●
●
●
●

●
●
●
●
●●
●
●●●●
●●●●
●

●

●

●
●
●●●●
●

●●●

●
●
●

●

●
●●

●

●

●

●

●

●
●●●
●

●

●

●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●
●●
●
●●●
●●
●●●
●●●●
●●●●●●●●●●●●●●●
●
●

●●

●●
●●●●●●●●
●
●
●
●
●
●●
●●●●
●
●
●

●●●
●●

●
●●●●●●●●●●●
●
●
●
●
●
●
●●●●●●
●

●

●●●●
●
●●
●●
●●●●●●●●●●
●●●
●●
●●
●●
●●●
●●●●●●
●●
●

●

●

●

●

●

●

●

●

●
●●
●●●●
●
●●
●

●
●●●●●●
●●
●●
●●●●●●●●
●●

●

●
●
●●
●●●●●●●
●
●●
●
●
●

●●●●●●●●●●●
●

●●

●●●●●●
●
●●●●
●●●●●●●●
●

●●●●●
●
●●
●
●
●
●●
●
●

●

●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●●
●●
●●●●●●●
●
●
●
●●●
●●●●●
●

●

●
●
●
●●●

●

●
●●

●
●●

●
●
●●●

●●●●

●

●
●●
●●
●
●
●●●●●●●●●●●●●
●

●
●●●●●●●
●
●●●●●
●●●●
●
●

●
●●●●
●

●●
●
●●●

●
●●
●●●●
●
●
●

●

●

●

●

●

●
●

●

●
●
●
●●
●●
●●●●●●
●

●●●●●●●●●●
●●●●
●●
●●
●●●●
●

●
●●●●
●

●
●
●
●●●●●●●●
●●●●●●●

●

●●
●●
●●
●●●
●
●
●

●
●

●●●
●●●●●

●

●
●
●
●●
●●●
●

●

●
●●●●
●●●
●●●

●
●●
●●●●●●●●

●
●●
●●●●●●●●●●●●●

●●●●●●●●●●
●●
●●
●●●●
●

●

●●
●●●
●●

●

●
●
●●
●●●
●●●●●
●
●
●
●●
●
●●
●●●●●●●
●
●
●●●
●
●
●
●●●
●●●●●
●●●●●

●●

●
●
●
●●●●
●●●●●
●●●●●●●●●●
●●
●●●●●●
●●
●●●●●●●●●●●
●●
●●●●●●

●
●

●●●
●
●
●
●
●●●●
●●●
●●●●●●●●●●●

●●●
●●
●
●

●
●●
●●●
●
●
●
●
●
●

●

●
●

●●●●●●●●●●●●

●

●●●●
●●
●●●

●

●●●●●●●●●●●●
●
●
●●
●
●

●
●

●
●
●
●
●
●
●
●

●
●
●
●
●●●●●

●
●●
●

●●●
●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●

●●●●●●●
●●
●●●●
●

●

●
●●
●●●●●●
●●
●●●

●
●
●
●
●
●
●●●●
●
●●●●●
●
●
●
●
●●●
●
●●
●●●●●●●●

●
●
●
●●●●●●●●
●●●●

●

●

●
●●●

●

●●
●
●●●●●
●●●●●●
●●
●●●
●●●
●

●

●

●
●
●

●●●
●
●●●●
●●●
●●
●●●
●●

●

●
●
●

●●
●

●●●
●●●

●
●
●●
●●●
●●●

●

●●●●●
●
●●●●●●●●●●●●●●●●●●

●
●●●●●●

●
●●●●●●●●●●●
●●
●●●●●
●●
●●
●
●●●●
●●
●
●●
●
●●
●●●●●
●
●●●●●●●●
●●●●

●

●
●
●●●

●

●
●●●
●●●●●●●●
●●
●●●
●●●●
●●●●
●

●
●
●
●
●
●●
●●
●
●
●
●●
●●●●●●●
●●●●●

●●

●

●

●
●●●●
●●
●
●●
●●●●●
●●●●●●●●●●●
●●●
●●●●
●

●●●

●

●

●

●
●

●●●●

●●

●

●
●
●
●
●●
●●●●●●●●●●●
●

●
●●●●●●●
●●●●
●●●●●●●●●
●
●
●●●
●●●
●●●
●
●●●
●

●●

●●●●●●●●●
●●●●●●●●

●
●
●

●
●

●●●●●●●●●
●●●●●
●●●●●

●
●●

●
●
●
●●●●●●●●●●●●
●●●●
●●●●●
●

●●●●
●
●
●●●●

●●●●●●●
●

●●
●
●●●●●●●●●

●●●●●●●●

●●●●
●
●●
●

●
●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●
●

●●
●●
●●●●●
●

●
●
●●●

●

●

●●●●●●●●

●

●
●●●●●●●●●●●
●●●●●●
●●
●●●●●●●●●●●●●●●●●●

●
●
●
●
●●
●●●
●●●●●

●●●●●●●●●●●●
●●
●
●
●
●
●●
●
●●●●●
●
●
●
●
●●
●
●
●●
●●
●

●●
●
●●
●

●

●

●●
●

●●
●
●

●

●
●●

●

●●

●●●●

●

●

●

●●●
●●●●●●

●

●
●●●●●
●●
●
●

●
●●●●

●●
●
●
●
●
●

●
●

●●●●
●
●●
●●

●
●
●●
●●
●●
●●●●●●●
●
●
●
●
●
●●●●
●●●●●

●

●

●

●●●

●
●●●●●
●●
●
●

●

●
●●●●●●
●

●

●
●●

●●●
●

●
●●
●
●●●
●

●
●●
●
●
●●●●●

●

●
●
●
●

●
●
●
●
●●●
●
●●
●●
●●
●
●●●●●●●
●●●●
●
●
●●
●

●●

●

●●

●●●●●●●●●●

●

●
●
●

●

●●●●●●●●●●

●

●

●
●
●●
●

●

●●●●●●
●●●●●●
●

●

●
●
●

●

●

●

●●
●●●
●●●●
●●●

●

●●●
●●●●
●
●●●●●●●●●●

●

●

●
●●●
●

●

●
●
●●●
●●●●
●●
●●
●

●
●●●●●●●●●●●●●●
●
●●●●●●
●●●●●●●●

●

●
●
●
●

●

●

●●●●●●●●●●●●●●●●
●

●

●

●
●
●

●●
●

●
●●●
●●●●●●●
●
●
●

●

●

●
●
●●
●
●

●●
●●
●●●●●●
●
●

●

●

●
●
●
●●●●●

●

●●

●

●●●●●●●

●●●●

●

●
●●●●

●

●●●●

●

●
●●

●
●
●

●●

●

●

●
●●●●
●●
●
●
●●●●●

●●

●
●
●●
●●●●●●

●●●●●●●●●●●
●
●●●●
●
●●●●●
●●●●
●●●
●●●●

●

●
●
●
●●●●●●●●●●●●●●●●●●

●

●
●

●●
●
●
●
●
●
●
●●
●●●

●

●●●●
●
●
●
●
●●●●●●●
●
●

●
●
●
●

●

●●●●●●
●●●
●●●●●●●

●●●●●●●

●

●●●●●●●

●

●

●
●●●●●●●●●
●●●●●●●●●●●●●●
●
●
●

●
●
●

●●

●

●

●
●●●●●
●●●●●

●

●
●
●
●
●

●●●●●●
●●●●

●
●●●●●
●●
●●

●

●●
●●●●●

●

●
●
●
●
●●●
●●
●●●
●

●

●
●●●●●

●
●

●

●

●
●●●●●●

●●

●
●
●
●
●
●●
●●
●●●●●●

●

●●●●
●

●●

●
●

●●

●

●
●●
●●
●●●●●●●●●●●●●●●
●
●
●●

●

●

●

●●
●

●
●●●●●
●
●●
●
●
●●●●
●

●

●

●

●●
●●●
●

●
●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●

●

●●
●
●
●
●

●

●
●●●●●
●●●●●
●●

●●
●
●
●●
●
●●
●●●

●

●
●
●
●
●●●●
●●
●●
●●●
●

●
●
●
●

●
●
●
●●
●●
●
●
●●●●●●
●●
●●●
●●●
●●●●●●
●

●
●●●●●

●
●

●●●●●●●
●
●●
●●
●●●●
●●●●●●
●
●
●●●
●
●
●
●●
●●
●
●
●
●
●
●
●
●
●●
●●●●●
●
●
●
●
●
●●●●●●●●●●●●●●
●●
●

●

●

●

●

●
●
●●●●●●●●●●●●●●●●●●

●

●
●
●●
●●●●●●

●

●

●
●

●
●

●
●

●

●
●
●●
●
●●●●●●●●●●●

●

●
●

●

●

●●

●

●●●●
●●
●●●●●●●●
●
●

●
●

●
●
●●●●
●
●●●●●●●●●●
●
●
●
●●●●●●
●●●
●●
●●
●●●
●●●

●●●●●
●●
●●●●●●●●●●●●●
●
●
●●●
●
●
●
●
●●
●●
●●●●●●●
●
●
●●

●

●

●●●
●
●
●●●●●●●
●
●●
●

●

●
●●●
●

●

●●●
●●
●
●

●

●●
●
●
●●

●

●●●●
●

●●●
●

●
●●
●●
●

●
●

●
●●●
●●●●●●

●
●
●●●●●
●●
●
●
●
●●

●

●●●
●●●●●
●●●
●●●●●●●●●●

●

●●
●●●●●●●●●●●
●●
●
●
●
●●●●
●
●

●●
●●
●●●●●●●●●●●

●

●●
●
●●●

●●●●●●●●
●●
●●●
●●●●
●

●
●●
●
●
●
●●●

●
●●
●●●
●
●

●

●
●
●●●
●●
●

●●
●●●●●●●●●●●●●
●
●●
●●●●●●●●
●
●●
●●
●●●
●●
●●●●●●
●

●
●
●●●●●●●
●
●●
●

●
●●●
●●
●
●●●●●●●●●

●●●●●●●●

●

●
●
●
●●
●

●●

●●●●●●●●●●●●
●●●

●

●●
●●●●●●●
●
●●●●●
●●
●●
●●
●

●

●●
●
●●
●
●
●
●
●

●●

●

●
●

●

●
●
●
●●
●●
●●●●●
●●●●●
●
●
●●●●
●
●
●●
●●●●
●●●●●●●●●●●●●●●●●●●●

●

●

●
●●
●●●●●●●●●●
●
●
●
●
●
●●
●●●●●●●●●●●●●●●●●●●●●●
●

●

●
●
●
●
●●●●●●●●●●●●●●
●●

●
●

●
●
●
●
●●●●●●

●
●●●●●●
●
●
●●
●●●●●●
●

●●●●●●●●●●●
●
●
●
●

●●●●●●●●●●●●●

●

●

●
●

●

●
●●●●
●

●

●

●

●
●
●
●
●
●●
●
●
●

●
●
●●●●

●

●
●
●
●
●

●
●●
●●
●●
●●
●●
●●●●●●●●●●
●
●●
●
●
●
●
●

●
●
●
●
●
●●
●●
●●
●●●
●

●
●●●●●●●●●●
●●
●●

●

●

●
●

●●
●
●
●
●
●
●●

●●

●

●

●
●●
●●●●●●●●●●●
●
●

●
●
●●●
●●
●●
●
●
●●

●

●

●

●
●
●
●

●
●

●●●●●●●●●

●●
●
●
●
●
●
●●●●
●
●
●●
●●
●●●
●●●●●●●●●
●
●
●
●●
●
●
●●
●●●●●●
●
●●
●
●
●
●●
●
●●
●●●●●●
●●
●●
●
●
●

●

●●●
●●●●●●●●

●
●●●●
●

●

●●●●
●●
●
●●
●●●
●●
●●
●●●●
●
●
●
●●

●
●
●
●●●●●●●●●

●

●

●
●
●●●●●●

●

●

●●
●●●●
●●●●
●●
●
●

●
●●●
●

●

●
●●●●●●
●

●

●●

●●●●●●

●●
●
●

●

●
●
●●

●●
●
●
●●

●
●

●
●
●
●
●●
●
●

●
●

●●●●●●●●●●●
●
●
●
●●
●●●●

●●
●●●●●●●●●
●●●
●
●
●
●
●
●
●
●
●
●
●

●●●●●●
●
●
●●●●●●●●
●●
●
●
●
●●
●

●

●
●
●●
●●
●
●
●●
●

●

●

●
●
●
●●
●

●
●
●●●●

●

●
●●●
●
●
●●

●

●

●

●
●●●
●
●●●●●●●●●●●●●
●
●●
●
●●●●●●●●●
●●
●●●●
●
●
●●

●

●

●

●●●●
●
●
●
●
●
●
●●●
●●
●●
●●
●●
●●
●●●●●●●
●●●●●●
●
●

●●●

●
●

●
●
●
●
●
●
●
●
●
●

●
●

●
●
●●●●●
●
●
●●

●●
●

●

●

●

●
●
●
●
●
●
●

●

●●●

●●
●

●
●
●●●●●●●●●●●
●●●●●●
●●●
●●●

●

●

●●●
●
●
●●

●
●

●

●●●●●●●●●●●●●●
●●
●
●
●
●
●●
●●●

●●●
●

●
●
●●
●
●
●●●●
●

●●●●●●●●●●●●●●●
●
●
●

●●

●
●
●
●
●
●●●
●
●
●
●●
●●●●●●●
●●●●●
●●●

●

●●

●

●

●
●
●●

●●●●●
●●●●●

●

●
●●
●

●●
●
●
●●●●●●●●●●
●
●

●

●●●●●
●●
●●
●
●
●●●●●●●●●
●
●
●●

●

●●●●
●●
●
●
●
●

●
●
●
●
●
●
●●●●

●
●
●
●
●
●

●
●

●

●
●

●
●

●●

●

●

●
●
●
●●●●●
●●●●
●●●●●●●●●●●●●●●●●●
●●●
●●●●●●
●●●

●

●

●●●●●●●●●●●●●●
●●●●●●
●
●
●●●
●●●●●●●
●

●
●
●

●
●

●
●

●
●

●

●
●●●●●●●●●

●●
●●●●●●●●●●●
●●●

●●●●
●●
●
●

●●

●
●●●

●●
●●

●

●●●
●
●

●

●

●
●

●

●●
●
●●

●
●
●
●●
●
●●●●
●
●●
●
●
●
●●●
●
●
●

0
10

0
20

0
30

0
40

0

Diphone Coverage Random Selection Fairytale

 F0 distributions in each subset

F0
 va

lue
s [

Hz
]

Figure 3.2: F0 distributions in each training subset.
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that the phonetic coverage is better. From the diphones/sentence column in the table

we can see that the subset designed for diphone coverage has better coverage in terms of

the number of different diphone types but – looking at the quinphones/sentence column

– its coverage of quinphones is slightly worse than random selection. This indicates that

the appropriate text design or sentence selection policy for HMM-based speech synthesis

should be different from that for unit selection.

All recorded sentences were manually end-pointed and have been checked for consis-

tency against the orthographic form. The newspaper sentences were read out using a

relatively flat intonation pattern, while the fairy tales had a more narrative rhythm and

prosody. Figure 3.2 shows the box-plots of F0 values extracted from all the sentences

of each of the training subsets, in which the mean is represented by a solid bar across

a box showing the quartiles, whiskers extend to 1.5 times the inter-quartile range and

outliers beyond this are represented as circles. From this figure we can see that the subset

including fairytales has a wider F0 variation than the other subsets.

3.3.5 The Romanian Speech Synthesis (RSS) Corpus

The text and speech resources presented so far make up most of the structure of a freely

available speech corpus entitled Romanian Speech Synthesis (RSS) corpus. Its structure

is presented in Fig. 3.3. The corpus can be downloaded from http://www.romaniantts.

com/new/rssdb/rssdb.html and includes the recordings for the training and testing sets,

their phonetic transcription, the corresponding HTS labels (discussed in Chapter 4), ac-

cent positioning and samples of synthesised audio files using the TTS system developed

within this thesis. The training HTS labels include time alignment, while the testing ones

do not.

The aim of the corpus is for researchers with an interest in Romanian language to find

a starting point resource for their applications. The corpus was tested within the built

parametric synthesis system. A partial test within a concatenative synthesis system was

also carried out (see Section 4.5).
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Figure 3.3: The structure of the Romanian Speech Synthesis (RSS) corpus.

3.3.6 Statistics of the Recorded Text in the RSS Corpus

To offer an insight to the textual elements of the RSS corpus, some statistics were employed

using the random and diphone coverage training sets [Stan and Giurgiu, 2010]. These

include: most frequent syllables, most frequent diphones, phoneme frequency and in the

context of HTS, most frequent quinphones.

Most frequent syllables

Using the HTS labels generated for the random sentences and diphone coverage sets, the

most frequent syllables were determined. Although there have not been any studies con-

cerning the influence of a correct syllabification within the HTS labels, this information

is used while building the clustering decision trees. Table 3.5 presents the top 40 most

frequent syllables with their relative frequencies in the selected set.The accented charac-

teristic is also presented, as in most of the European languages, the accent positioning

can change the meaning of the word. There are a total of 2920 different syllables in the

RSS text corpus and they add up to about 48,000 syllables. The statistic results are in
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Table 3.5: The top 40 most frequent syllables and their relative frequencies in the selected
speech corpus. The Accent column marks the accent of the syllable (0 - not accented, 1
- accented)

Syllable Accent Frequency [%] Syllable Accent Frequency [%])

a 0 3.02 o 1 0.66
te 0 2.36 ta 1 0.61
de 1 2.13 ni 0 0.57
a 1 1.69 li 0 0.56
re 0 1.55 ţi 0 0.56
le 0 1.32 din 1 0.55
e 0 1.20 că 0 0.55
şi 1 1.19 pe 1 0.54
la 1 1.03 ce 1 0.53
ân 1 1.00 tru 0 0.50
ne 0 0.88 ti 0 0.50
nu 1 0.83 se 1 0.49
tă 0 0.78 mai 1 0.48
ca 1 0.76 ân 0 0.48
ri 0 0.75 me 0 0.47
de 0 0.72 au 1 0.46
ce 0 0.70 e 1 0.45
u 0 0.67 un 1 0.43
să 1 0.67 ma 0 0.43
cu 1 0.66 ră 0 0.43

correspondence with the ones obtained by [Buza, 2010] for an extended text corpus.

Phoneme frequencies

Given the importance that the phonemes have in the HTS parametric synthesiser, the

relative frequency of the phonemes within the two sets was computed and is presented in

Table 3.6.

It can be observed that the least frequent phonemes are the fricative zh and dz and

the affricate h. These have been determined to cause some unnaturalness in the synthetic

speech as well. So that, the RSS corpus should be enhanced with more samples of these

3 phonemes.
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Table 3.6: Phoneme frequencies within the selected speech corpus.

Phoneme Frequency [%] Phoneme Frequency [%]

e 10.64 ch 1.58

a 10.33 a@ 1.49

i 7.09 v 1.38

r 6.78 sh 1.28

t 6.67 f 1.26

n 6.35 ij 1.14

u 5.58 ts 1.08

l 4.67 b 1.02

s 4.12 z 0.92

o 4.05 e@ 0.86

k 3.74 w 0.73

m 3.39 g 0.69

p 3.18 o@ 0.47

@ 3.13 zh 0.31

d 3.10 dz 0.28

j 2.41 h 0.13

Most frequent diphones

Diphones have been one of the initial building blocks of concatenative synthesis, prior

to unit selection. Their importance is still acknowledged in the current methods due to

the effect of a phoneme over the following one. A proper diphone coverage in a speech

corpus can determine improvements in the output quality. Table 3.7 presents the top 40

most frequent diphones in the selected speech corpus and their relative frequencies. The

Romanian diphone inventory includes 731 diphones based on their occurrence in at least

10 words in the Romanian Explicative Dictionary (DEX) [DEX online-webpage, 2011].

The total number of diphones in the speech corpus is around 120,000.

Most frequent quinphones

In HMM-based speech synthesis the classification and regression trees are built on a

series of features presented in Appendix D, of which one of the most important and
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Table 3.7: The top 40 most frequent diphones and their relative frequencies in the
selected speech corpus.

Diphone Frequency [%] Diphone Frequency [%])

r-e 1.47 e-l 0.80
d-e 1.32 e@-a 0.80
t-e 1.28 t-a 0.79
a-r 1.28 a-n 0.77
a-t 1.17 a-l 0.76
i-n 1.16 k-u 0.75

a@-n 1.10 r-a 0.73
s-t 1.06 e-k 0.72
u-l 1.02 a-m 0.69
e-r 1.02 m-a 0.68
n-t 1.00 p-e 0.67
e-s 1.00 k-a 0.66
u-n 0.96 p-r 0.65
r-i 0.94 n-u 0.64
e-n 0.94 i-t 0.61
o-r 0.89 sh-i 0.57
t-r 0.86 n-i 0.57
l-e 0.83 e-d 0.56
l-a 0.82 u-r 0.55

ch-e 0.82 i-a 0.54

predominant in the question definition is the phoneme context9. This information is

also known as a quinphone10. It is relevant while building a speech corpus for HTS to

determine the best quinphone coverage. This is an impossible task, given that even in

Romanian considering 32 phonemes plus silence and pause the possible quinphones add

up to 270,000 possibilities.

In the selected subset there are around 57,000 different quinphones with 110,000 oc-

currences, which means that there is an approximate coverage of 25% with an average

occurrence of 2. Table 3.8 presents the most frequent 40 quinphones and their relative

frequencies within the set.

9The phoneme identity before the previous phoneme, the previous phoneme identity, the current
phoneme identity, the next phoneme identity and the phoneme identity after the next phoneme

10There are 5 phonemes which determine the phoneme context.
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Table 3.8: The top 40 most frequent quinphones and their relative frequencies within
the selected speech corpus.

Quinphone Frequency [%] Quinphone Frequency [%]

j-e-s-t-e 0.187 i-n-t-e-r 0.038
e-n-t-r-u 0.182 ts-j-o-n-a 0.038
p-e-n-t-r 0.177 a-m-e-n-t 0.038
a-ch-e-s-t 0.109 r-o-m-a-n 0.036
a-f-o-s-t 0.093 r-e-zh-e-ch 0.036

o@-a-r-t-e 0.073 s-p-r-e-z 0.036
f-o@-a-r-t 0.071 i-n-t-r-e 0.036
p-r-e-z-e 0.066 n-t-r-u-a 0.036
u-r-i-l-e 0.056 a-ch-e@-a-s 0.035
e-k-a-r-e 0.055 ch-e-a@-s-t 0.035

o@-a-m-e-n 0.048 ch-i-n-ch-ij 0.035
a-w-f-o-s 0.047 m-a-j-m-u 0.035
w-f-o-s-t 0.047 z-e-ch-ij-sh 0.035
r-i-l-o-r 0.045 e-ch-ij-sh-i 0.035

e-z-e-ch-e 0.044 f-@-k-u-t 0.035
t-u-l-u-j 0.042 s-p-e-k-t 0.033
t-a-t-e-a 0.041 a-j-m-u-l 0.033
t-r-e-b-u 0.041 t-o-r-u-l 0.033

a@-n-ch-e-p 0.039 e-p-e-n-t 0.033
s-p-u-n-e 0.038 p-a-t-r-u 0.032
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3.4 Summary

This chapter introduced the development of several Romanian text and speech resources.

These resources are an essential prerequisite for developing a Romanian text-to-speech

system. In the first section, a short overview of the necessities for a correct resource

acquisition and development is presented. These include the quality of the resulted system,

the correct phonetic transcription or broad use of the resources. The entire chapter is

built around two main units: the text resources and the speech resources.

Text resources were developed according to the requirements of a simple TTS front-

end, and include:

• a collection of 4506 newspaper articles with over 1,700,000 words trawled from the

online newspaper ”Adevărul”

• a simplified phonetic inventory for Romanian which comprises 32 phonemes

• a set of basic rules for phonetic transcription written in Festival

• a source for correct accent positioning identified as the SQL database of the Online

Romanian Explicative Dictionary (DEX)

• a preliminary evaluation of the Maximal Onset Principle of syllabification applied

to Romanian

• part-of-speech tagging of the entire text corpus using [Sabou et al., 2008]

• a 65,000 word lexicon with correct phonetic transcription and accent positioning

The nature of the text resources is rather general than particular. One aspect left

aside within this approach is the Romanian text normalisation, which is more of a Natural

Language Processing problem than a text-to-speech one.

A very important addition to the available resources is the speech corpus. Given

the prior evaluation of the freely available Romanian speech resources, the need for an

extended, broad application speech corpus was identified. This lead to the acquisition of

approximately 4 hours of high-quality recordings which include text from both newspapers

and narrative writings. They include:

• Training set utterances - approx. 3.5 hours

– 1493 random newspaper utterances

36



3.4. Summary

– 983 diphone coverage utterances

– 704 fairytale utterances - the short stories Povestea lui Stan Păţitul and Ivan

Turbincă by Ion Creangă

• Testing set utterances - approx. 1/2 hour

– 210 random newspaper utterances

– 110 random fairytale utterances

– 216 semantically unpredictable sentences

The recordings were done in a hemianechoic room with 3 simultaneous microphones,

at 96kHz sampling frequency and 24 bits per sample. To achieve an even lower level of

noise, the speech was down sampled at 48kHz, 24 bits per sample.

Another important development is the set of 216 semantically unpredictable sentences,

essential in the evaluation of a TTS system and unavailable for Romanian. The develop-

ment process is presented in section 3.3.2 and the complete list in Appendix I.

A selection of the resources was included in the Romanian Speech Synthesis database,

freely available online. For a correct evaluation of the RSS database, statistics of the

recorded text, such as phoneme or diphone relative frequencies, are briefly presented in

section 3.3.6.

All of the presented resources are freely available, some on request, such as the lexicon

or the text corpus and some online, at www.romaniantts.com within the RSS database.

They provide a starting point for the comparative evaluation of TTS systems for example,

or the development of new and enhanced resources or speech processing systems, be them

automated speech recognition or text-to-speech synthesis.

37

www.romaniantts.com




Chapter 4

A High Sampling Frequency

Romanian Parametric

Text-to-Speech Synthesiser based on

Markov Models

4.1 Introduction

HMM-based statistical parametric speech synthesis [Zen et al., 2009] has been widely

studied and has now become a mainstream method for text-to-speech systems. The

HMM-based speech synthesis system (HTS) [Zen et al., 2007a] is the principal framework

that enables application of this method to new languages. It has the ability to generate

natural-sounding synthetic speech and, in recent years, some HMM-based speech synthe-

sis systems have reached performance levels comparable to state-of-the-art unit selection

systems [Karaiskos et al., 2008] in terms of naturalness and intelligibility. However, rela-

tively poor perceived “speaker similarity” remains one of the most common shortcomings

of such systems [Yamagishi et al., 2008b].

One possible reason that HMM-based synthetic speech sounds less like the original

speaker compared to a concatenative system built from the same data, may be the use of

a vocoder, which can cause buzziness or other processing artefacts. Another reason may

be that the statistical modelling itself can lead to a muffled sound, presumably due to the
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process of averaging many short-term spectra, which removes important detail.

In addition to these intrinsic reasons, there are also extrinsic problems: some basic

configuration choices in HMM synthesis have been simply taken from different fields such

as speech coding, automatic speech recognition and unit selection synthesis. For instance,

16 kHz is generally regarded as a sufficiently high waveform sampling frequency for speech

recognition and synthesis because speech at this sampling frequency is intelligible to

human listeners. However speech waveforms sampled at 16 kHz still sound slightly muffled

when compared to higher sampling frequencies. HMM synthesis has already demonstrated

levels of intelligibility indistinguishable from natural speech [Karaiskos et al., 2008], but

high-quality TTS also needs to achieve naturalness and speaker similarity.

Another practical, but equally important, factor is footprint. In unit selection, higher

sampling frequencies may lead to a larger footprint. However, the use of higher sam-

pling frequencies does not in itself change the footprint of a HMM-based speech synthesis

system. The use of higher sampling frequencies increases computational costs for both

methods.

These apparently basic issues are revisited within this chapter in order to determine

whether current configurations are satisfactory, especially with regard to speaker simi-

larity. As the sampling frequency increases, the differences between different auditory

frequency scales such as the Mel and Bark scales [Zwicker and Scharf, 1965] implemented

using a first-order all-pass function become greater. The experiments also included a

variety of different auditory scales.

The RSS corpus is also evaluated and the best set of training data for a qualitative

synthesis is determined. The training set is a key feature in providing the statistical

models with sufficient data. Given the speech corpus presented in the previous chapter,

several combinations of its subsets are used to build HTS voices.

Section 4.5 reports the results of a Blizzard-style listening tests [Karaiskos et al., 2008]

used to evaluate HMM-based speech synthesis using higher sampling frequencies as well as

standard unit selection voices built. The results suggest that a higher sampling frequency

can have a substantial effect on HMM-based speech synthesis.

This chapter is organised as follows. Section 4.2 presents the theoretical aspects of the

parametric HMM-based speech synthesiser. Section 4.3 describes the prerequisites HTS
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system, from text, to decision questions and speech data, while section 4.4 defines the

configuration for the HTS parameters. In section 4.5 the evaluation of the resulted system

using a Blizzard-style listening test and the afferent results are presented. As an additional

and continuous evaluation, the system is available for an interactive demonstration online,

described in section 4.5.2. A side experiment using the adaptation capabilities of HTS is

presented in Section 4.5.3.

4.2 HMM-based Speech Synthesis

4.2.1 The Hidden Markov Model

A hidden Markov model is a finite state machine which generates time discrete obser-

vations. In a Markov chain, each state corresponds to a deterministic observable event.

Non-deterministic processes are the input of the hidden state models and the output is any

of model’s state. So that, an observation is a state dependent probabilistic function. It

therefore exists a hidden stochastic process which cannot be observed. The hidden process

can only be associated with another observable process, producing a series of observable

characteristics. At each time sample, HMM modifies its states according to a transition

probability and generates the observation o according to the probability distribution of

the current state. A continuous HMM is described according to [Yamagishi, 2006] by:

• o - an output observation data. The observation data corresponds to the physical

output of the system being modelled

• ω = 1, 2, ...N - a set of states representing the state space. Here st is denoted as the

state at time t

• A = aij - a transition probability matrix, where aij is the probability of taking a

transition from state i to state j, i.e. aij = P (st = j|st−1 = i)

• B = bi(o) - an output probability distribution. The output probability distribution

bi(o) of the observational data o of state i is modelled by a mixture of multivariate

Gaussian distributions according to bi(o) =
∑M

m=1wimN (o;µim,Σim), where M is

the number of mixture components of the distribution, and wim, µim and Σim are

a weight, a L-dimensional mean vector, and a L × L covariance matrix of mixture

component m of state i, respectively. A Gaussian distributionN (o;µim,Σim) of each
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Figure 4.1: Example of a left to right HMM structure

component is defined byN (o;µim,Σim) = 1
(2π)L|Σim|exp

(
−1

2
(o− µim)>Σ−1

im(o− µim)
)
,

where L is the dimensionality of the observation data o.

• π = πi an initial state distribution where πi = P (so = i), 1 6 i 6 N

The following properties must be satisfied:

aij > 0, wim > 0, πi > 0,∀i, j,m
∑N

j=1 aij = 1, i = 1...N
∑M

m=1wim = 1, i = 1...N
∑N

i=1 πi = 1, i = 1...N
∫
o
bi(o)do = 1

To sum up, a complete specification of an HMM includes two constant-size parameters,

N and M the total number of states and the number of mixture components, wim the

Gaussians weights, the observational data o, and three sets (matrices) of probability

measures A,B, π in the following notation:

φ = (A,B, π)

to indicate the whole parameter set of an HMM.

In speech processing, the most common HMM structure used is the left-right one (Fig.

4.1). In this structure, the state index is incremented or remains constant. This type of

model approximated correctly the speech signal, whose characteristics modify over time.
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4.2.2 Speech Signal Parameter Modelling

As a parametric synthesis method, HMM-based speech synthesis needs a set of features

extracted from the speech in order to estimate its inner models. In the HMM-based

speech synthesis, the speech parameters of a speech unit such as the spectrum, funda-

mental frequency (F0), and phoneme duration are statistically modelled and generated

by using HMMs based on maximum likelihood criterion [Yamagishi, 2006]. The speech

is analysed at frame level and develops context-based models for each phoneme. The

spectrum features are represented by the Mel-Frequency Cepstral Coefficients, similar to

the method used in automatic speech recognition. The following subsections describe the

extraction of the feature vector and the building of the HMMs.

Mel-cepstrum analysis

In speech analysis, the most common model for speech production is the source-filter

model. Within the mel-cepstrum analysis, the transfer function of the vocal tract, H(z)

is modelled by the mel-cepstrum coefficients (MFCC). This representation is obtained by

applying the discrete Fourier transform (DFT) over a speech frame. The Fourier spectrum

is then filtered through a Mel-scale frequency filterbank. From each sub band, the log of

the power is computed and the discrete cosine transform (DCT) is applied to the result.

The MFCCs are the amplitudes of the resulting spectrum(Fig. 4.2). The correspondence

between mel-scale and normal frequency scale is:

m = 2595log10

(
1 + f

700

)

Speech
Discrete 
Fourier 

Transform

Log 
amplitude of 
spectrum

Mel‐scaling 
and 

smoothing

Discrete 
Cosine 

Transform

MFCC 
Coefficients

Figure 4.2: MFCC coefficients computation
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The advantage behind this type of representation is the fact that these coefficients

remain independent and allow for a probability distribution modelling by a diagonal

covariance matrix. Along with the MFCC coefficients, the feature vector also includes the

delta and delta-delta coefficients of the MFCC.

Fundamental Frequency Modelling

MFCC models the spectrum of the speech, while an important characteristic of speech is

the pitch or fundamental frequency. Because of the lack of pitch values in the unvoiced

segments, F0 cannot be modelled using conventional discrete or continuous HMMs. Thus,

a new type of HMMs are defined, the Multi-space Probability Distribution HMM (MSD-

HMM) [Tokuda et al., 1999], ([Tokuda et al., 2002a]). In order to model the pitch using

MSD-HMMs two spaces are defined: a one dimensional space with a probability density

function for the voiced segments and a zero dimensional space containing a single point

for the unvoiced segments. In this way, F0 can be modelled without making any heuristic

assumptions of its values.

HMM state duration modelling

In standard HMM models, the transition probabilities determine the duration charac-

teristics of the model. In phoneme synthesis, the duration must be explicitly specified,

because of its major influence in the speaker characteristics and in the rhythm and prosody

of speech. Another type of HMM models is so defined. They are called Hidden Semi-

Markov Models (HSMM) and the transition probabilities are replaced by explicit Gaussian

models for the duration.

4.2.3 Decision Tree Building for Context Clustering

In continuous speech, the parameter sequences of an acoustic unit varies according to the

phonetic context. The correct modelling of these variations implies context dependent

models, such as triphones or quinphones. In HMM-based speech synthesis systems, the

context is defined by both the phonetic and the linguistic and prosodic context. A con-

textual clustering is achieved using binary decision trees. Each tree node defines a cluster

based on a contextual factor. Each tree leaf contains an output probability distribution
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Figure 4.3: Decision tree context clustering in HMM-based speech synthesis (after
[Tokuda et al., 2002b]).

of the state. The trees are built using the Minimum Description Length (MDL) principle

are are used to cluster pitch, duration and spectrum. Fig. 4.3 shows the three different

decision trees built for context clustering in HTS.

4.2.4 Speech Parameter Generation

The input labels of the HMM-based speech synthesiser offer information about the phoneme

sequence, but not about the HMM states that should be used in synthesis. To de-

termine the state sequence, the Maximum Likelihood (ML) algorithm is applied. The

MFCC coefficients are synthesised using a Mel Log Spectrum Approximation (MLSA)

filter [Imai et al., 1983].
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4.2.5 The HMM-based Speech Synthesis System

The HMM-based Speech Synthesis System (H Triple S - HTS) is a collection of open

source tools dedicated to the development of text-to-speech systems using Markov models

[HTS webpage, 2010]. The content of these tools refer strictly to the modelling, training

and speech generation without text processing. The system input is represented by the

HTS labels presented in section 4.3.1.

HTS is built on the Hidden Markov Model Toolkit (HTK) [Young et al., 2001]. HTK

was initially developed for automatic speech recognition. The training part of the HTS is

a modified version of HTK. In Fig. 4.4 the block diagram of the HTS system is presented.

Two main sections can be observed: training and synthesis. In the training section,

the spectrum, pitch and duration HMM models are extracted. Decision tree clustering is

applied to the MFCC coefficients, pitch values and duration. The HMMs are re-estimated

using a Baum-Welch algorithm. The result of the training section are the decision tree

clusters with their respective parameters in the leaf nodes.

The synthesis section uses HTS labels to generate phoneme level HMM state sequences.

The MLSA filter is then applied to generate the synthetic speech from the state parame-

ters.

HTS is very flexible and allows for the following parameter modification, both in the

training and in the synthesis sections:

• training data set

• sampling frequency

• non-linear transformation of the frequency scale

• analysis/synthesis frame length

• cepstral order

• analysis method: STRAIGHT Mel-cepstrum, STRAIGHT Mel-generalised cepstrum,

STRAIGHT Mel-LSP, STRAIGHT Mel-generalised LSP

• pitch estimation method: IFAS, Fixed-Point analysis, ESPS, voting between previ-

ous methods

• number of HMM states

• the root node decision tree question
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Figure 4.4: Basic HTS structure (after [Yamagishi, 2006]).

An important development of the HTS system is the speaker conversion described by

[Stylianou et al., 1998, Ohtani et al., 2006]. Starting from the speaker dependent or in-

dependent trained decision trees, using Maximum Likelihood Linear Regression (MLLR),

the models are adapted to a new training data. The results of the adaptation are not

considered high-quality, but the amount of necessary training data is largely reduced

[Yamagishi et al., 2009]. Speaker adaptation represents one of the major advantages of

parametric synthesis over the concatenative system. Studies show that an average of 5

minutes recordings can capture the gross features of a new speaker if the starting models

are speaker independent.
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4.3 Data Preprocessing

4.3.1 Prerequisites to an HTS Compliant Text Annotation

As the scope of this thesis relies mostly on the speech synthesis, and less on the text pro-

cessing, a very basic, simple Romanian text processor was developed using the technology

provided by Cereproc [Aylett and Pidcock, 2007]. The main focus was the ability to cre-

ate HTS format labels from raw text. Text normalisation was not taken into account, and

letter-to-sound rules are simplified. The text resources described in Chapter 3 represent

the basis of the text processor. CDF is a commercial tool and intrinsic aspects of the

implementation are not public. At the point of the implementation, Cereproc offered

mainly concatenative systems, so that the output of the front-end had to be converted

into HTS specific labels.

The HMM-based Speech Synthesis System requires a very elaborate text annotation

in order to correctly classify the phoneme features based on the context they appear in.

The complete list of features is presented in Annex D and are referred to as HTS labels.

It can be noted that most of the features require an extensive text processing and can

derive problems when not involving a correct text processor. For the system training, the

HTS labels also include the temporal markers for the beginning and end of the phoneme,

while in the synthesis part, the duration is given by the decision tree model.

From the full set of features, a few have been left aside or had a reduced form, due to

the lack of knowledge and resources available. These are:

• ToBI labels - require manual annotation of the F0 contour for the training stage.

The speech corpus developed and used did not benefit from any manual annotation

therefore, the default value for the ToBI labels in the training set is L-L. In the

synthesis part, although the text processor could derive heuristic ToBI labels, the

decision trees of the HTS voice are not trained in such manner, thus resulting the

same intonation no matter the ToBI labels.

• Part-of-Speech tags - have been reduced to the feature, content categories because

of the lack of accuracy of the POS tagger used1.

1The authors reported in an offline document an average accuracy of 70%
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• Stress - in Romanian there is no difference between stress and accent, so that the

stress marker equals the accent marker for the Romanian labels

• Name of the vowel - was considered the vowel within the syllable and not the

diphthong or triphthong

Their influence in the result of the system has not yet been evaluated, but given the

broad spectrum of features used, they are not considered as essential for the quality of

the synthetic speech.

4.3.2 Decision Tree Questions for Romanian

The HMM models are clustered using the binary decision trees. The tree nodes are

defined by the significant context of the current phoneme and influence the clustering

in the training stage. The correct definition of the nodes’ questions is therefore of great

importance. The HTS labels are built using the full context of the phoneme, and the

features are presented in Appendix D. All of the features are used in the final decision

tree, but their influence is weighted according to the decision tree building algorithm.

Some of the context features are language dependent, such as the phonetic context,

or the name of the vowel. But the rest of them are language independent and represent

for example the number of syllables before the current syllable or the number of words

in the phrase. For the phonetic set of features the questions have to be rewritten for

the Romanian set of phonemes. Below is a short sample of the questions defined for the

Romanian HTS system and are built using the Unilex sample questions for English:

QS ”LL-Trill” {r˜* }
QS ”LL-Approximant” {l ˜* }
QS ”LL-BilabialNasal” {m˜*}
QS ”LL-DentalNasal” {n˜*}

QS ”LL-Bilabial Plosive” {p˜*, b˜* }
QS ”L-m” m˜*

QS ”L-n” n˜*

QS ”L-f” f˜*
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QS ”L-v” v˜*

QS ”L-s” s˜*

QS ”C-Nasal” *-m+*,*-n+*

QS ”C-Plosive” *-p+*,*-t+*,*-k+*,*-b+*,*-d+*,*-g+*

QS ”C-Voiced Plosive” *-b+*,*-d+*,*-g+*

QS ”C-Unvoiced Plosive” *-p+*,*-t+*,*-k+*

QS ”C-Affricates” *-ts+*,*-ch+*,*-dz+*

QS ”R-Front Vowel” *+i=*,*+e=*,*+e@=*,*+ij=*,*+j=*

QS ”R-Front close vowel” *+i=*,*+ij=*,*+j=*

QS ”R-Front mid vowel” *+e=*,*+e@=*

QS ”R-Front nearback vowel” *+iw=*,*+ew=*,*+we=*,*+jew=*

QS ”R-Front nearfront vowel” *+ij=*,*+ej=*,*+je=*,*+jej=*,*+jew=*

QS ”RR-o@” *=o@:*

QS ”RR-u” *=u:*

QS ”RR-w” *=w:*

QS ”RR-@” *=@:*

QS ”RR-a@” *=a@:*

It can be observed that the detail level in the definition of the questions is quite

high. Apart from the vowel/consonant categories, each of the phonemes are described

through their sound quality. For the phonetic context alone there are 712 questions

defined, repeated for the right-right, right, current, left and left-left contexts. This means

a number of 178 distinct questions for each position.

4.3.3 Prerequisites to an HTS Compliant Speech Corpus

As opposed to unit selection in concatenative speech synthesis, HMM-based parametric

systems require a less extended speech corpus. A major issue relies in the acquisition of

enough examples of phonemes in certain contexts. Having the quinphone as the basic unit

of synthesis, the correct coverage of the quinphones is necessary although not essential.

The correlation effects of the phoneme pronunciation may lead to some contexts being

clustered in the same class, no matter how many samples of speech are available. Al-

though, it is important to maintain a flat intonation throughout the corpus, thus limiting
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the number of context clusters and ensuring enough training samples within them.

The only major requirement is that the speech corpus is labeled using the HTS format

and that the training labels contain phoneme level time alignment. Having the text

processor already available, the entire speech corpus was labelled. All the words found

in the recorded sentences were checked in the lexicon for correct phonetic transcription.

The time alignment was carried out in a bootstrapping manner using the result labels of

the HTS training step. The initial time alignment was simply determined by dividing the

total length of the utterance to the number of phonemes in it. The training labels have

the format presented in Appendix D.

4.4 Building an HMM-based Speech Synthesis Sys-

tem using High Sampling Frequency

A recent HMM-based speech synthesis system described in [Zen et al., 2007b] was adopted.

It uses a set of speaker-dependent context-dependent multi-stream left-to-right state-

tied [Young et al., 1994, Shinoda and Watanabe, 2000] multi-space distribution (MSD)

[Tokuda et al., 2002a] hidden semi-Markov models (HSMMs) [Zen et al., 2007c] that model

three kinds of parameters, required to drive the STRAIGHT [Kawahara et al., 1999]

mel-cepstral vocoder with mixed excitation [Kawahara et al., 2001]. Once the context-

dependent labels from the language-dependent front-end outputs are defined, the frame-

work of this system is basically language-independent and thus it can be directly used on

the data.

The sampling frequency of the speech directly affects feature extraction and the

vocoder and indirectly affects HMM training via the analysis order of spectral features.

The following sections give an overview of how the sampling frequency affects the first-

order all-pass filter used for mel-cepstral analysis and how the higher sampling frequencies

in this analysis method can be utilised.
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4.4.1 The first-order all-pass frequency-warping function

In mel-cepstral analysis [Tokuda et al., 1991], the vocal tract transfer function H(z) is

modelled by M -th order mel-cepstral coefficients c = [c(0), . . . , c(M)]> as follows:

H(z) = exp c>z̃ = exp
M∑

m=0

c(m)z̃−m, (4.1)

where z̃ = [1, z̃−1, . . . , z̃−M ]>. z̃−1 is defined by a first-order all-pass (bilinear) function

z̃−1 =
z−1 − α
1− αz−1

, |α| < 1 (4.2)

and the warped frequency scale β(ω) is given as its phase response:

β(ω) = tan−1 (1− α2) sinω

(1 + α2) cosω − 2α
. (4.3)

The phase response β(ω) gives a good approximation to an auditory frequency scale with

an appropriate choice of α.

An example of frequency warping is shown in Fig. 4.5. where it can be seen that, when

the sampling frequency is 16 kHz, the phase response β(ω) provides a good approximation

to the mel scale for α = 0.42. The choice of α depends on the sampling frequency used and

the auditory scale desired. The next section describes how to determine this parameter

for a variety of auditory scales.

4.4.2 The Bark and ERB scales using the first-order all-pass

function

In HMM-based speech synthesis, the mel scale is widely used. For instance, Tokuda et

al. provide appropriate α values for the mel scale for speech sampling frequencies from

8kHz to 22.05kHz [Tokuda et al., 1994a].

In addition to the mel scale, the Bark and equivalent rectangular bandwidth (ERB)

scales [Patterson, 1982] are also well-known auditory scales. In [Smith III and Abel, 1999],
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Figure 4.5: Frequency warping using the all-pass function. At a sampling frequency of 16
kHz, α = 0.42 provides a good approximation to the mel scale.

Smith and Abel define the optimal α (in a least-squares sense) for each scale as follows:

αBark = 0.8517
√

arctan(0.06583 fs)− 0.1916 (4.4)

αERB = 0.5941
√

arctan(0.1418 fs) + 0.03237 (4.5)

where fs is the waveform sampling frequency. However, note that the error between the

true ERB scale and all-pass scale approximated by αERB is three times larger than the

error for the Bark scale using αBark [Smith III and Abel, 1999]. Note also that as sampling

rates become higher, the accuracy of approximation using the all-pass filter becomes worse

for both scales.

4.4.3 HMM training

The feature vector for the MSD-HSMMs consists of three kinds of parameters: the mel-

cepstrum, generalised logF0 [Yamagishi and King, 2010] and a set of band-limited aperi-

odicity measures [Ohtani et al., 2006], plus their velocity and acceleration features.

An overview of the training stages of the HSMMs is shown in Figure 4.6. First, mono-

phone MSD-HSMMs are trained from the initial segmentation using the segmental K-
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Figure 4.6: Overview of HMM training stages for HTS voice building.

means and EM algorithms [Dempster et al., 1977], converted to context-dependent MSD-

HSMMs and re-estimated using embedded training. Then, decision-tree-based context

clustering [Young et al., 1994, Shinoda and Watanabe, 2000] is applied to the HSMMs

and the model parameters of the HSMMs are thus tied. The clustered HSMMs are re-

estimated again using embedded training. The clustering processes are repeated until

convergence of likelihood improvements (inner loop of Figure 4.6) and the whole process

is further repeated using segmentation labels refined with the trained models in a boot-

strap fashion (outer loop of Figure 4.6). In general, speech data sampled at higher rates

requires a higher analysis order for mel-cepstral analysis. Therefore the process started

by training models on lower sampling rate speech (16 kHz) with a low analysis order and

gradually increased the analysis order and sampling rates via either re-segmentation of

data or single-pass retraining of HMMs [Yamagishi and King, 2010].

4.4.4 Configurable parameters

In order to establish a benchmark system which will be useful for many future experiments,

the various configurable parameters were carefully adjusted as follows:

1. From initial analysis-by-synthesis tests using five sentences followed by informal

listening, the spectral analysis method and order are chosen. Specifically, the mel-
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cepstrum and mel-generalised cepstrum (MGC) [Tokuda et al., 1994b] at orders of

50, 55, 60, 65 and 70, using Bark and ERB frequency warping scales2 using speech

data sampled at 48 kHz were compared. The parameter to control all-pole or cepstral

analysis method was set to 3 [Tokuda et al., 1994b]. The results indicated the use

of MGC with 60th order and the Bark scale. However, the differences between

the Bark and ERB scales were found to be not as great differences due to the

sampling frequency. [Yamagishi and King, 2010] also found that the auditory scale

– including the Mel scale – was not a significant factor. Therefore the ERB scale

and the Mel scale were omitted from the listening test reported later. The same

process for speech data sampled at 32 kHz and chose MGC with 44th order with

the Bark scale was repeated.

2. Preliminary HMM training was then carried out to determine training data parti-

tions. A total of 20 systems resulted from combinations of the recorded data used

in sets of 500, 1000, 1500, 2500 and 3500 sentences. From informal listening, the

fairy tale sentences were found to alter the overall quality of the synthesised speech,

since these sentences had a more dynamic prosody than the newspaper sentences

(see Figure 3.2). Therefore the fairy tale set was excluded and a 2500 sentence set

was used in subsequent experiments.

3. The data-driven generalised-logarithmic F0 scale transform method proposed in

[Yamagishi and King, 2010] was employed. The maximum likelihood estimator for

the generalised logarithmic transform obtained from F0 values of all voiced frames

included in the RSS database is 0.333, calculated using the optimisation method

described in [Yamagishi and King, 2010], .

4. The decision trees for speech from non-speech units (pauses and silences) were sep-

arated using as root tree question C − sil, rather than having a shared single tree.

In the experiments reported in this chapter, only speech recorded using the Sennheiser

MKH 800 microphone was used. Investigation of the differences caused by the microphone

type are left as future work.

2Strictly speaking, they should be called Bark-cepstrum and ERB-cepstrum. However, for simplicity
they will all be called ‘mel-cepstrum’.
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Table 4.1: Mean scores for the speech synthesis listening test sections

A B C D E F G H I

Similarity 4.9 2.6 2.5 2.7 3.1 3.0 3.1 3.4 3.3

Naturalness 4.8 2.2 2.5 2.4 3.3 3.0 3.4 3.4 3.4

Intelligibility (WER [%]) 1.0 5.0 5.8 7.1 4.1 8.0 5.0 3.5 4.5

4.5 Evaluation

4.5.1 Experiment 1 – Listening Test

For the listening test, the framework from the Blizzard Challenge [Karaiskos et al., 2008]

was used, and evaluated speaker similarity, naturalness and intelligibility.

A total of 54 Romanian native listeners were recruited, of which 20 completed the test

in purpose-built, soundproof listening booths and the rest evaluated the systems on their

personal computers and audio devices, mostly using headphones. They each evaluated a

total of 108 sentences randomly chosen from the test set, 36 from each category (news,

novel, SUS). The speaker similarity and naturalness sections contained 18 newspaper

sentences and 18 novel sentences each. 36 SUSs were used to test intelligibility.

The duration of the listening test was about 45 minutes per listener. Listeners were

able to pause the evaluation at any point and continue at a later time, but the majority

opted for a single listening session. Most of the listeners had rarely listened to synthetic

voices; they found the judgement of naturalness and speaker similarity to be the most

challenging aspects of the test.

Nine individual systems were built for the evaluation. All used the same front-end

text processing. They differ in the synthesis method used (HMM-based, unit selection),

sampling frequency (16 kHz, 32 kHz, 48 kHz) and the amount of data used for the training

of the voice. The analysis of the three microphones is an interesting topic but, in order to

make the listening tests feasible, this factor had to be excluded. The systems are identified

by letter:

A Original recordings, natural speech at 48 kHz

B Unit selection system at 16 kHz, using 3500 sentences

C Unit selection system at 32 kHz, using 3500 sentences
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Table 4.2: Significance at 1% level for (a) similarity , (b) naturalness and (c) WER,
based on Wilcoxon signed rank tests with alpha Bonferoni correction (1% level); ‘1’ indi-
cates a significant difference.

A B C D E F G H I

A - 1 1 1 1 1 1 1 1
B 1 - 0 0 1 1 1 1 1
C 1 0 - 0 1 1 1 1 1
D 1 0 0 - 1 0 0 1 1
E 1 1 1 1 - 0 0 0 0
F 1 1 1 0 0 - 0 1 1
G 1 1 1 0 0 0 - 1 0
H 1 1 1 1 0 1 1 - 0
I 1 1 1 1 0 1 0 0 -

(a)

A B C D E F G H I

A - 1 1 1 1 1 1 1 1
B 1 - 0 0 1 1 1 1 1
C 1 0 - 0 1 1 1 1 1
D 1 0 0 - 1 1 1 1 1
E 1 1 1 1 - 1 0 0 0
F 1 1 1 1 1 - 1 1 1
G 1 1 1 1 0 1 - 0 0
H 1 1 1 1 0 1 0 - 0
I 1 1 1 1 0 1 0 0 -

(b)

A B C D E F G H I

A - 1 1 1 0 1 1 0 1
B 1 - 0 0 0 0 0 0 0
C 1 0 - 0 0 0 0 0 0
D 1 0 0 - 0 0 0 0 0
E 0 0 0 0 - 0 0 0 0
F 1 0 0 0 0 - 0 0 0
G 1 0 0 0 0 0 - 0 0
H 0 0 0 0 0 0 0 - 0
I 1 0 0 0 0 0 0 0 -

(c)
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D Unit selection system at 48 kHz, using 3500 sentences

E HMM system at 48 kHz, using 500 training sentences

F HMM system at 48 kHz, using 1500 training sentences

G HMM system at 16 kHz, using 2500 training sentences

H HMM system at 32 kHz, using 2500 training sentences

I HMM system at 48 kHz, using 2500 training sentences

By comparing systems B, C and D with E, F, G, H and I, the effect of the synthesis

method can be observed. By comparing systems B,C,D or G,H,I, the effect of sampling

frequency, per synthesis method can be seen. Comparing systems E,F,I,the effect of the

amount of training data for the HMMs is determined.

In the speaker similarity task, after the listeners listened to up to 4 original recording

samples, they were presented with a synthetic speech sample generated from one of the

nine systems and were asked to rate similarity to the original speaker using a 5-point

scale. The scale runs from 1 [Sounds like a totally different person] to 5 [Sounds like

exactly the same person]. In the naturalness evaluation task, listeners used a 5-point

scale from 1 [Completely Unnatural] to 5 [Completely Natural]. In the intelligibility task,

the listeners heard a SUS and were asked to type in what they heard. Typographical

errors and spelling mistakes were allowed for in the scoring procedure. The SUS each

comprised a maximum of 6 frequently-used Romanian words.

Results

Speaker similarity – the left column of Fig. 4.7 shows the results for speaker similarity.

A clear separation between the original voice (system A), HMM voices (systems

E, F, G, H and I) and unit selection voices (systems B, C and D) can be initially

observed. It can be also observed a clear influence of the sampling frequency over

speaker similarity although improvements seem to level off at 32kHz. This is a new

and interesting finding. Also there is some influence of the amount of training data.

The difference between systems E and F is less significant whereas the difference

between systems F and I is significant. Neither 500 nor 1500 sentences were sufficient
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Figure 4.7: Results of the speech synthesis listening test. The graphs are box plots where
the median is represented by a solid bar across a box showing the quartiles and whiskers
extend to 1.5 times the inter-quartile range.

for training models that can reproduce good speaker similarity, since the feature

dimension is very high due to the high order mel-cepstral analysis.

Although it was expected that unit selection would have better similarity than

HMM-based, the results are contrary to preliminary expectation. This may be

explained by the corpus design: In the corpus, only 1000 sentences were chosen based

on diphone coverage and the remaining 2500 sentences consist of 1500 randomly
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chosen newspaper sentences and 1000 fairy tale sentences. Even if both types of

sentences are combined, there are still 16 missing diphones and 79 diphones having

fewer than 3 occurrences. Although quinphones, the base unit of HMM voices, do

not have good coverage either, unit selection systems (which use diphone units) are

known to be more sensitive to lack of phonetic coverage, compared to HMM-based

systems [Yamagishi et al., 2008a].

Naturalness – similar tendencies to those for the similarity task can be seen, except that

sampling frequency does not seem to have any effect. The use of higher sampling

frequency did not improve the naturalness of synthetic speech, in contrast to speaker

similarity. This is also an interesting finding. Regarding the amount of data, there

are some fluctuations, although the largest amount of data typically leads to the

best voice for each synthesis method.

Intelligibility –unfortunately there appears to be something of a ceiling effect on in-

telligibility. Absolute values of WER are generally small: both synthesis methods

have good intelligibility. Even though systems D and F have a slightly higher error

rate, there are no statistically significant differences between any pairs of synthetic

voices in terms of WER. To confirm this a small additional test including paronyms

was performed, and obtained the same results. The lack of significant differences

between systems is partly caused by the nature of the simple grapheme-to-phoneme

rules in Romanian. Even for SUSs and paronyms, both natural and synthetic speech

are easy to transcribe, leading to WERs close to zero. This result suggests there

is a need for better evaluation methods for the intelligibility of synthetic speech in

languages such as Romanian.

Listening environments – to discover whether the listening environment affects the

results an ANOVA test was performed. An ANOVA test at 1% significance level

shows that only the system C (unit selection system at 32 kHz, using 3500 sentences)

in the similarity test was affected by the listening environment. The subjects who

completed the test in the listening booths generally gave lower similarity scores for

system C.
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Listening Test Summary

This RSS corpus is probably better suited to HMM-based synthesis than to unit selection.

All speech synthesis systems built using the corpus have good intelligibility. However, a

better evaluation of the system’s intelligibility in simple grapheme-to-phoneme languages

such as Romanian has to be designed.

The sampling frequency is an important factor for speaker similarity. More specifically,

down sampling speech data in this corpus to 32kHz does no harm, but down sampling to

16kHz degrades speaker similarity. The use of higher sampling frequency, however, did

not improve either the naturalness or intelligibility of synthetic speech.

These results are consistent with existing findings: [Fant, 2005] mentions that almost

all the linguistic information from speech is in the frequency range 0 to 8 kHz. This

implies that a 16 kHz sampling frequency (and thus 8 kHz Nyquist frequency) is sufficient

to convey the linguistic information. The results also showed that using sampling fre-

quencies over 16 kHz did not improve the intelligibility of synthetic speech. On the other

hand, a classic paper regarding sampling frequency standardisation [Muraoka et al., 1978]

reported that a cut-off frequency of less than 15 kHz may deteriorate audio quality. This

means that the sampling frequency used should be higher than 30 kHz. In fact, the results

do show that down sampling to 16kHz degrades speaker similarity. Therefore it can be

concluded that the naturalness and intelligibility of synthetic speech only require trans-

mission of linguistic information, which can be achieved at 16kHz sampling frequency,

whereas speaker similarity of synthetic speech is affected by audio quality (requiring a

higher sampling rate).

4.5.2 Experiment 2 – Online Interactive Demonstration

A TTS system requires an extensive evaluation of the resulted speech so that feedback

from a numerous group of people can be received. The Romanian speech synthesis system

is available online at www.romaniantts.com as an interactive demonstration. Its presence

has been advertised using a series of forums with threads on Romanian TTS.

Additionally, the website includes synthesis samples in the form of the first three
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chapters of the public-domain novel ”Moara cu noroc” by Ioan Slavici3 4. Synchronised

lyrics are embedded into the mp3 files.

Since the launch of the application in August 2010, a number of 836 distinct users have

accessed it. Access statistics are supplied by Google Analytics and internal IP tracking.

The user input text is archived for further analysis and improvement of the synthetic

speech. Analysis include: type of text, text normalisation issues and segmentation faults.

Contacts have been made with users willing to use the system in their own applications,

sight-impaired persons and pedagogues.

4.5.3 Experiment 3 – Adaptation to the Fairytale Speech Cor-

pus

One of the important features of a parametric synthesiser is the possibility to adapt the

parametric models to new speech corpora. [Yamagishi, 2006] describes an efficient adap-

tation algorithm using the Maximum Likelihood Linear Regression (MLLR) technique

[Leggetter and Woodland, 1995], and Structural Maximum A Posteriori Linear Regres-

sion (SMAPLR) [Shiohan et al., 2002]. HTS had dedicated an entire unit to the speaker

adaptation which can be used in conjunction to already trained models and sufficient

adaptation data. It is reported that for a speaker independent or average HTS voice, as

little as 5 minutes of speech are sufficient.

A preliminary adaptation experiment was carried out, trying to adapt the models of

the best synthesis system to approximately 20 minutes of another person’s speech. In a

heuristic evaluation it was established that some of the features of the new speaker have

been traced, but speaker similarity was below 3 on a MOS scale.

But in the context of the system developed, it was of great interest the adaptation of

the best system5 to the remaining fairytale subset of the RSS corpus. The idea was to

enhance the pitch models by the new training data, as the fairytale subset had a more

dynamic pitch domain. The 67 minutes in the fairytale data are sufficient enough, given

the fact that they are reproduced by the same speaker.

After the adaptation, small increases in the intonation patterns were detected. These

3http://romaniantts.com/moaraCuNoroc/chapter1-2.mp3
4http://romaniantts.com/moaraCuNoroc/chapter3.mp3
5HTS, 2500 utterances, 48kHz sampling rate
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Figure 4.8: Comparison between the baseline system generated F0 contour and the con-
tour resulted from the adaptation to the fairytale corpus

are supported by a listening test. 15 sentences were synthesised using the baseline HTS

system and the adapted one. The sentences were presented for a preference evaluation to

20 listeners. The listeners used their own audio systems for the evaluation and were asked

to choose the most expressive sample in each pair, using [0-No preference], [1-First sample]

and [2-Second sample]. The listeners are not speech processing experts and considered

the test quite hard given the subtle differences.

The results showed a 55% preference for the adapted voice, 35% for the baseline and

10% no preference. The results are thus not quite conclusive and further testing should

be done. Although it is an important method to enhance already available parametric

voices. Fig. 4.8 shows the difference between the original F0 contour generated by the

baseline HTS system and the adapted F0 contour. It can be observed that the middle

section of the utterance is slightly enhanced, and that the duration is shifted, indicating

faster rhythm.

4.6 Summary

In this chapter the complete development of a Romanian HMM-based speech synthesis

was described. Using the RSS corpus, some basic configuration choices made in HMM-
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based speech synthesis such as the sampling frequency and auditory scale, which have

been typically chosen based on experience from other fields have been revisited. The use

of high sampling frequency and different auditory scales is a novel method compared to

the basic HTS systems built so far.

A short theoretical overview of the HMMs and HTS was also presented along with the

prerequisites for data preprocessing, such as time alignment of the HTS labels, the full set

of questions for the decision trees and the speech corpus. Because the analysis of the pitch

values in the fairytale corpus showed a more extended F0 domain, this subset of the RSS

corpus was left aside. The questions for the decision trees include a phonetic-dependent

section, that had to be rewritten according to the Romanian phoneme set.

The systems built were then compared in a Blizzard-style listening test against a min-

imal unit selection synthesiser and in order to determine the influence of the: sampling

frequency and amount of training data. The sections included naturalness, speaker sim-

ilarity and intelligibility. Higher sampling frequencies (above 16 kHz) improved speaker

similarity. More specifically, the speech data in this corpus can be down sampled to 32kHz

without affecting results but that down sampling to 16 kHz degrades speaker similarity.

The intelligibility section arose an interesting problem: in languages with rather simple

grapheme-to-phoneme rules, the errors have a ceiling effect in the sense that the systems

involved in the evaluation did not have significant differences. The best HTS Romanian

system was included in a online interactive demonstration at www.romaniantts.com.

A side evaluation was the analysis of a voice adaptation of the best HTS system to

the fairytale subset, left aside from the initial training data. The results of a preference

test indicated a 55% preference for the new adapted voice, but the results cannot be

considered as conclusive and further evaluation should be performed, potentially using a

more expressive speech corpus.
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Chapter 5

A Language-Independent Intonation

Modelling Technique

5.1 Introduction

The result of the speech synthesisers are often aimed more at intelligibility and less at

expressivity. Especially for languages with limited resources, expressivity is hard to ob-

tain. In order to achieve artificially enhanced expressive speech, F0 modelling techniques

have been introduced. Most of the techniques use manual or semi-automated annotation

of speech, which is prone to errors. Other use language-dependent phonological charac-

teristics.

In the context of limited resources for Romanian, a language-independent model which

uses no additional manual annotation would provide the much needed synthetic speech

enhancements. This chapter introduces a method based on the Discrete Cosine Transform

(DCT) of the phrase and syllable level of the F0 contour. Recent studies have shown that

with the help of a linguistic-independent methods, more insight on the intonation effect

can be derived, and contour classification based on some abstract events, other than

accent, phrasing or rhythm can be achieved.

The scope of the DCT parametrisation is to use a limited, fixed, linguistic and duration

independent set of parameters in the description of the F0 contour. Using no manual

annotation leaves no space for subjective evaluations and thus no errors. These parameters

can also be used in a statistical unsupervised classification of the intonational events.
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The basic principle of the DCT parametrisation is that voiced segments of the pitch

are a continuous curve that can be represented as a sum of cosine functions with different

frequencies. Another important aspect of the use of DCT coefficients is the ability to

model F0 at different levels or layers in accordance with an additive superpositional model

–small ripples on top of big waves – [Sun, 2002, Sakai, 2005, Santen et al., ]. There is

therefore a phrase level which determines its type (declarative, interrogative, exclamatory

etc); a word level through which semantic sense can be accentuated; a syllable level or

phoneme level in which the semantic emphasis relies.

Other arguments for the selection of the DCT are the use of deterministic algorithms

in both the analysis and the synthesis stages of F0 modelling. The possibility of distance

calculation between the parameters is also important. [Teutenberg et al., 2008] considers

the ToBI model inadequate because the are no fully automated methods of annotation.

Other models such as Tilt or Fujisaki do not provide the ability to measure the distance

between the used characteristics and the description is based on non-deterministic oc-

currence of intonation events within the utterance. Also, the previous methods cannot

sustain compression of data for transmission or storing.

The proposed method within this chapter is based on the DCT parametrisation of the

F0 contour using two layers: phrase and syllable. The DCT coefficients are extracted using

a superpositional approach and are then predicted using classification and regression trees.

The results are presented in terms of correlation coefficients of the CART algorithms used,

but also in terms of re-synthesis using the Romanian HTS system. The method is also

evaluated so that it would be applied in an interactive intonation optimisation method

using evolution strategies described in Chapter 6.

The chapter is organised as follows. Section 5.2 presents the theoretical aspects of

F0 modelling, focusing on the possible problems that can occur and some of the models

already proposed. From these models, the parametric DCT-based was chosen for the

reasons presented above and the method is summarised in section 5.3.1. And section 5.3

describes the proposed method and its results.
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5.2 F0 Modelling Techniques

This section addresses the state-of-the-art methods for F0 modelling along with their

advantages and disadvantages. There is a short introduction for the need for F0 modelling

continued with an overview of common techniques used. Some Romanian intonational

models are also discussed.

5.2.1 Prosody

Prosody represents one of the most important areas of research for text-to-speech systems.

The high quality of TTS is however limited by the use of relatively complex prosodic

models, which in turn lack the naturalness of the spontaneous speech. Although the

concatenation or spectrum estimation errors have been almost fully resolved, the systems

have a robotic output, due to the lack of prosodic enhancement. The current tendency

is to introduce several cues of prosodic information within the front-end of the system,

such as semantic analysis or accent and focus emphasis, sometimes using paralinguistic

information.

In linguistics, prosody represents the rhythm, accent and intonation of the speech.

Prosody can reflect several different speaker characteristics, such as: emotional state,

utterance type (i.e. declarative, interrogative etc.), irony and sarcasm, emphasis, contrast

or focus, as well as other language dependent elements which cannot be attributed to

language grammar, such as choice of words and utterance structure.

The terms of accent, rhythm and intonation belong to phonology and are associated

with the cognitive aspects undertaken during speech. This means that they are abstract

terms which need a physical correspondent, such as amplitude, fundamental frequency or

duration [Tatham and Morton, 2005]. This correlation can be achieved through prosody

modelling, which concerns the transformation of speech prosody to physical aspects: rise

or fall of pitch, formant frequency spectrum modification or duration changes.

A basic description of prosody refers to it as the combination between intonation

and timing [Taylor, 2009]. Intonation is considered as a result of the variations of the

fundamental frequency, while timing refers to the duration of the speech segments. In text-

to-speech systems, intonation has been the key focus of several studies and it still remains

67



Chapter 5. A Language-Independent Intonation Modelling Technique

an open issue. Intonation encompasses all the linguistically relevant, suprasegmental,

non-lexical aspects of the fundamental frequency - or its perceptual correlate, the pitch –

through the course of spoken utterances [Gronnum, 1995].

Pitch or fundamental frequency1 is the oscillating frequency of the glottis during

speech and determines its harmonic structure. It can be computed only in the voiced

segments of speech and it is speaker dependent. It is influenced by the length, tension and

mass of the vocal cords and the pressure of the forced expiration also called sub-glottal

presure [Taylor, 2009]. The information conveyed by the pitch signal is the following:

speaker gender, age and state of health, emotion, accent and prosody.

5.2.2 F0 Modelling Problems In Text-to-Speech Systems

F0 modelling represents the correlation between the speech intonation and the events

within the pitch contour. But, while trying to derive a universal intonation model for

TTS, several problems occur. The problems can be stated as follows:

Inter-language variability - Languages are based on specific, limited areal evolution

and are a result of human interaction and mimicry. Intonation or prosodic patterns

are the result of social interaction learning and have specific characteristics within

a language or family of languages.

Inter-speaker variability - Speakers of the same language can sometimes express their

emotions in various intonational patterns, determined by dialect or by the social

upbringing.

Intra-speaker variability - Given the conversational situation, or rather the emotional

state of the speaker, its intonation behaviour can vary over time.

TTS system input - the basic TTS system has as input, as its name says, the raw

text with no additional information available. The TTS system is forced to esti-

mate based on deterministic or probabilistic rules, a possible prosodic output. At

the moment, except for some isolated cases, this output is directly related to the

speech corpus used in the training section. As a paradox, most of the systems use a

1Pitch is considered to be the perceptual equivalent of the fundamental frequency, but in the literature
they are often referred to as equivalent
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rather flat intonation within the training corpus to avoid spectrum or concatenation

disfluencies.

A unified model of speech production - There is no universally accepted model or

method to represent or describe specific aspects of speech (e.g. accent, rhythm or

intonation ). Although there are quite a handful of proposed models, none of them

have managed to provide a complete description of the physiological and cognitive

process which result in speech, as opposed to the simplicity and robustness of the

verbal components of a language (i.e. phonemes, words, phrases) [Taylor, 2009].

Semantic aspect of speech - Speech is not the result of just the chaining of several

words within a sentence. It also contains the meaning, or semantics of the sentence.

Different words contain a certain degree of emotion within their sense (e.g. anger

within the word hate), so that their reproduction or reading is influenced by the

underlying emotion. So far, there is no semantic memory or learning involved in a

TTS, and no full semantic description yet. Some systems use punctuation, which is

far from semantics, but still provides some guidelines to the outcome of the synthesis.

What is a correct prosodic model? - it is crucial to determine beforehand what the

system is set to accomplish. It can be argued that the system should refrain to

reading aloud a given text. On the contrary, some might wish to have a fully

conversational unit, which interacts no less than a human being. It should confer

the user the impression of a fully cognitive and articulatory process. Some have said

that if a TTS system is to be used for example over a telephone line, the listener

should not have the impression of a real person at the end of the line, as it might

cause frustration. A security issue would be the replication of public personalities.

Possible Solutions

These give rise to some possible limited solutions, which can be thoroughly analysed to

obtain a more elaborate, abstract model.Some of the problems above have been or are in

the process of being solved using some of the following possible solutions:

• using the punctuation as a basic intonation evaluation method. Commas, dots,

exclamation or question marks offer rudimentary cues to some intonational patterns.
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• using prosodic annotation of the text, is a solution is some TTS systems. For

example, XML2 tags containing pitch or duration values can be used to modify the

prosody. But this involves a manual annotation which is not desired in real-time

applications, or for non-expert users. They cannot be extended and generalised, as

it is a momentarily decision or preference.

• the use of generic semantic analysis for utterance emphasis determination

• implementing an intelligent or memory-based semantic unit for the TTS system

5.2.3 Intonation Models

The problems stated in the previous section could be solved if a correct universal F0

modelling method can be defined. The are quite a generous number of models proposed

starting from phonological aspects up to simple parametrisation of the fundamental fre-

quency as a continuous curve. The following sections present a few common F0 modelling

or parametrisation techniques according to [Taylor, 2009].

The RFC and Tilt models

These models are based Palmer’s idea [Palmer, 1922] to use dynamic characteristics of the

F0 contour, such as rise and falls. The most important aspect of the contour is its nuclei,

optionally preceded by the head and pre-head and followed by the tail. The prosodic

events can therefore be described at nuclei level, through a rise followed by a fall3, each

with an amplitude and duration attributed (see Fig. 5.1). The main disadvantage is that

these parameters cannot be interpreted and easily manipulated.

An implementation of this method is the Tilt model which transforms the amplitude

and duration parameters into three Tilt parameters: amplitude is the sum of the mag-

nitudes of the rise and fall amplitudes, duration is the sum of the of the rise and fall

durations and tilt describes the global form of the international form based on its ampli-

tude and duration. The Tilt model described the intonation as a series of events, but it

does not use a fixed number of categories, but a set of continuous domain parameters.

2SSML - Speech Synthesis Markup Language is an XML-based markup language embeded in
VoiceXML to control some aspect of the synthetic speech

3RFC - rise/fall/connections
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Figure 5.1: Definition of the RFC parameters

Each event has a rise and a fall, and in between there are straight lines named connex-

ions. All of the variations in the accent form and the edge form are obtained through the

modification of the rise and fall components, as well as the way in which the events are

aligned with the speech components.

Autosegmental-Metrical and ToBI models

These are one of the most popular F0 modelling models. The Autosegmental-Metrical

(AM) or Tones and Break Indices (ToBI) model describes the pitch through a series of

low (L) and high (H) tones in combination with a series of diacritics which differentiate

between the tones located on accented syllables from those occurring at boundaries and

between accents. Accents can be composed of one or two tones. Each accent can be

directly associated with the accented syllable, noted by ”*”, or can be a boundary tone,

marked by a ”%”, or a phrase tone, marked by a ”-”. The list of possible pitch accents is:

H*, L*, H* + L, H + L*, L + H* and L* + H. An example of a simple TOBI annotation

is shown in Fig. 5.2. The break indices mark the the boundary strength between adjacent

words on a scale of [0 - No boundary] to [4 - Phrase boundary].

As opposed to the British school, there is no separation between the nuclei and the head

for example. Each of these events can be described by any of the values presented above.

Each tone represents a target and the pitch values are obtained through interpolation.

Even the HTS labels use this type of annotation, but still require a manual annotation,
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Figure 5.2: Example of ToBI annotation (from [Jilka et al., 1999])

which reduces their use and applicability. It is important to note that ToBI is a labelling

system and does not specify the means to produce quantitative intonation from the ToBI

labels [Benesty et al., 2007].

The INTSINT model

This model was developed in order to allow a multi-lingual annotation of the intonation.

In [Hirst and Cristo, 1998] the full model and the method in which it can be applied to

multiple languages is described. The principle is the description of a series of prosodic

events through a limited number of attributes with a rather abstract character, so that

they are not language or speaker dependent. A set of target points are used, which are

defined relative to the speaker’s fundamental frequency or relative to the previous target

point.

The Fujisaki Model

The Fujisaki model tries to provide an accurate description of the F0 contour based on

the way in which it is produced in speech. The model has two components: phrase and

accent. It is a derivation of the filter method proposed by Ohman [Ohman, 1967]. The

input of the model are impulses used to produce phrase shapes and step functions for the

accent shapes. The implementation contains two second order FIR filters, one for each

component. It is considered to be the first superpositional model for F0 modelling.
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(a) (b)

Figure 5.3: Example of phrase (a) and accent (b) excitations and contours used by the
Fujisaki model

Comparison

Table 5.1 presents a comparison between the methods presented above in terms of purpose

of the model, type (phonological, phonetic or acoustic), character of pitch representation

(tone or pitch shapes and dynamics) and the number of levels of parametrisation (super-

positional or linear).

Table 5.1: A comparison between most common F0 modelling techniques

Model

Tilt Purpose Description of pitch events
Type Acoustic
Pitch representation Shape
Level Linear

ToBI Purpose Theory of how intonation
occurs in human communication

Type Phonological
Pitch representation Tone
Level Linear

INTSINT Purpose An equivalent to IPA for intonation
Type Phonetic
Pitch representation Shape
Level Linear

Fujisaki Purpose Reproduction of the actual articulation
Type Acoustic
Pitch representation Shape
Level Superpositional
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Romanian Intonation Models

For Romanian both deterministic and statistical models of intonation have been proposed.

An important resource is [Hirst and Cristo, 1998], where D. Jinga defines a series of into-

national patterns using simple semantics and syntactics. In his work, [Bodo, 2009] applies

these studies to a diphone concatenation synthesis system, with satisfactory results. A

more basic approach is presented in [Ferencz, 1997], where prosody can be manually ma-

nipulated through a number of parameters set by the user.

The works of [Apopei and Jitcă 2008], [Jitcă et al., 2008], [Apopei and Jitcă 2006],

[Apopei and Jitcă 2007] and [Apopei and Jitcă 2005] define a set of intonational cate-

gories for Romanian, and the methods through which these categories can be directly

derived from text with additional tags.The categories are used in a formant synthesis

system.

A series of analysis of the accent influence over the word and phrase level F0 contour, as

well as speech rhythm and speed are presented in [Giurgiu, 2006, Giurgiu and Peev, 2006].

An interesting approach using the Topic-Focus Articulation method has been used in

[Curteanu et al., 2007].

5.2.4 Discrete Cosine Transform

DCT is a discrete transform which expresses a sequence of discrete points as a sum of

cosine functions oscillating at different frequencies with zero phase. The are several forms,

but the most common one is DCT-II. The coefficients are computed according to Eq. 5.1.

C(u) = α(u)
N−1∑

x=0

f(x)cos

[
π(2x+ 1)u

2N

]
, u = 0, 1, 2, ..., N − 1 (5.1)

The inverse transform of the DCT is presented in Eq. 5.2.

f(x) =
N−1∑

u=0

α(u)C(u)cos

[
π(2x+ 1)u

2N

]
, x = 0, 1, 2, ..., N − 1 (5.2)

In both equations α(u) is defined as:

α(u) =





√
1/N , u = 0

sqrt(2/N) , u 6= 0
(5.3)
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Figure 5.4: The first 8 DCT basis cosine functions

Discrete Cosine Transform is commonly used in signal and image processing. Its

advantages rely in the fact that it can compress and concentrate most of the energy of a

signal into relatively few low-frequency coefficients. DCT is also a good approximation to

principal component analysis, also known as Karhunen-Loeve transform [Vaseghi, 2007].

DCTs are also used for solving partial differential equations by spectral methods and

Chebyshev polynomials. Fast DCT algorithms are used in Chebyshev approximation of

arbitrary functions by series of Chebyshev polynomials, for example in Clenshaw-Curtis

quadrature.

The first 8 DCT basis cosine functions are represented in Fig. 5.4.
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5.3 F0 Parametrisation using the Discrete Cosine Trans-

form

Until recent, intonation was considered to be strictly part of the underlying phoneme, with

little or no regard towards the effects of the context and longer states such as syllables or

words. Some recent studies [Sun, 2002] define the intonation as a superpositional model

of several overlapping layers. Fujisaki’s [Fujisaki and Ohno, 1998] intonation model is in

some ways an implementation of the superpositional principle, in the sense that the accent

components are overlapped to the phrase component. As opposed to Fujisaki’s model,

recent studies introduced superior linguistic levels, such as syllables or words.

5.3.1 Related Work

In the last few years, a series of articles have addressed the issue of DCT parametrisation of

the F0 contour. The first work to use DCT as a pitch parametrisation method is presented

by [Muralishankar et al., 2004]. The authors use the DCT coefficients to modify the pitch,

based on the linear prediction residual. [Teutenberg et al., 2008] is the first work to use

DCT coefficients for the prediction of the F0 contour for speech synthesis. It uses two

pitch layers: phrase and voiced segment. The phrase level is represented by a contour

that passes through the mean pitch value of every voiced segment. This means that the

first coefficient of the voiced segments can be excluded. Because the unvoiced segments

of the pitch have undefined F0 values, these segments are linearly interpolated. At the

voiced segment level, DCT coefficients are extracted with no additional processing.

To determine the correct number of DCT coefficients which does not introduce a

significant error, an analysis was performed. The F0 contour is parametrised using the

discrete cosine transform and then the number of coefficients is limited. The results

indicate a value of 6 coefficients for the phrase level and 10 for the voiced segments.

For the synthesis stage, classification and regression trees are built for each coefficient.

The parameters used in the nodes of the tree are: segment duration, accent position,

segments position for the voiced segments and phrase duration, accent position and phrase

position for the phrase level. The errors are reported to be smaller than in other methods,

such as [Sakai, 2005, Sun, 2002].
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[Latorre and Akamine, 2008] continues the ideas in [Teutenberg et al., 2008], but adds

a series of conditions and parameters. Instead of the voiced segments, the syllable level

is introduced. It also uses the parametrisation of the logF0 syllable level contour. Linear

interpolation is also used in the unvoiced segments of the F0. To limit the interpolation

errors, pitch values were limited using the following conditions: F0 values have an auto-

correlation coefficient higher than 80%; they belong to the phonemes which have a clear

periodicity (vowels, semivowels, nasals) and have a value that does not exceed a margin

of half an octave around the average value of the syllable’s logF0.

Decision trees are used to group the parameters. Similar models are built for other

linguistic levels. For the synthesis, the statistical model of each layer is used to define a log-

likelihood function. These models are weighted and summed into a global log-likelihood

which is maximised in respect to the syllable level DCT coefficients. The tests shown

a clear preference towards the proposed model against the pure HMM model. For the

training and prediction stages, several parameters have been added. These parameters are

classified into concatenation and description parameters. The concatenation ones define

the neighbouring syllable, through first coefficient delta parameter (∆DCT0) and the F0

gradient in the concatenation point between syllables (∆LogF0prevs , ∆LogF0nexts ). The

description parameters refer to the current syllable F0 contours through logF0 variance

(V ar(logF0)). These four parameters along with the 7 DCT coefficients used at syllable

level determine decisions in the classification and regression trees. Their results conclude

to a more dynamic F0 contour, considered more natural.

Another work which used the DCT parametrisation of the F0 contour is [Wu et al., 2008].

The work used the phrase and syllable level. As a novelty, there is no interpolation of

the unvoiced segments. To estimate the DCT coefficients, classification and regression

trees based on Maximum Likelihood (ML) and Minimum Description Length (MDL) are

used. Along with the DCT parametrisation, Natural Cubic Spline (NCS) is evaluated.

NCS determined higher errors in the prediction stage. The Robust Algorithm for Pitch

Tracking (RAPT) extract the F0 values. They use 7 DCT coefficients, delta and delta-

delta parameters of the first DCT coefficient for the syllable level. For the phrase level

the first 3 DCT coefficients were selected to represent a contour that passes through each

syllable’s mean value.
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The most recent and elaborate work in this area is [Qian et al., 2009]. It continues the

work of [Wu et al., 2008], but additionally addresses the issue of the acoustic segments

duration. The F0 extraction method and parameters are the same as in [Wu et al., 2008].

The differences rely in the use of a state level contour, generated by the Markov chains

and the maximisation of the joint probability of state and higher levels.

5.3.2 Proposed Method

The works of [Latorre and Akamine, 2008], [Qian et al., 2009], [Teutenberg et al., 2008]

and [Wu et al., 2008] presented the arguments and results of DCT parametrisation of

the pitch contour. These methods are all based on the superpositional principle of into-

nation. The results presented in the articles indicate a justification for this method of

parametrisation.

Starting from these studies, a new method for F0 parametrisation using DCT is pro-

posed [Stan and Giurgiu, 2011]. The novelty relies in the parametrisation of the syllable

level, that is, the IDCT of the phrase level coefficients are subtracted from the origi-

nal F0 contour4. In other words, the syllable is considered to have an additive effect

over the phrase level and it is not considered as absolute value. On the other hand, in

[Qian et al., 2009] the authors mention the use of just the vocal segments for parametri-

sation, although it is not clear how they evaluated the DCT coefficients of just these

segments. Therefore the implemented method uses a linear interpolation of the unvoiced

segments. The number of DCT coefficients is 8 for the phrase level and 7 for the syllable

level. This choice is based on a preliminary evaluation of the error introduced by the

limiting of the DCT coefficients. For the phrase level, 8 coefficients were selected, because

DCT0 represents the mean of the curve and it is considered to be speaker dependent.

Fig. 5.5 presents the error values with respect to the number of the DCT coefficients

used to parametrise a random syllable contour. The number of coefficients varies from

1 to the length of the syllable. It can be observed that for a number as low as 5 DCT

coefficients, the error is around 15Hz.

4It might be argued that the syllable level includes the phoneme level as well, but using just a limited
number of coefficients for the syllable level, the phoneme level is considered to be the remaining F0
variation
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Figure 5.5: Error of the DCT coefficients truncation in the prediction of a random syllable
F0 contour.

The steps of the method are the following:

(1) Extraction of the F0 contour from the entire audio corpus using a voting method

between: Instantaneous Frequency Amplitude Spectrum (IFAS), Fixed Point Analysis

and Entropic Signal Processing system (ESPS)

(2) Linear interpolation of the unvoiced segments

(3) Phrase level segmentation

(4) Extraction of the first 8 DCT coefficients from the phrase level contour

(5) Subtracting the IDCT of the phrase level contour from the original one

(6) Syllable level segmentation

(7) Extraction of the first 7 DCT coefficients from the syllable level contour

(8) Additional feature extraction

(9) Classification and regression tree training

(10) DCT coefficients prediction based on the best algorithm selected in the training

stage

(11) Comparing the predicted F0 contours with the ones generated by the baseline

synthesis system

(12) Speech synthesis using the predicted F0 contour and audio evaluation of the result
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5.3.3 Audio Corpus Preprocessing

In order to estimate the DCT coefficients of the F0 contour using classification and regres-

sion trees, a training data set is needed. A subset of the RSS corpus was selected, namely

rnd1, a 500 random selected newspaper utterances. The corresponding HTS labels were

also used. The phrase and syllable level segmentation was achieved using these labels.

After the segmentation a number of 730 phrases and 13029 syllables were identified

within the rnd1 subset. For the evaluation part, the first 10 utterances were set aside.

They contain 16 phrases and 301 syllables. The DCT coefficients were extracted using

self-implemented Python scripts. Along with the DCT coefficients for each level, a series

of parameters were added to the feature vectors, as follows:

Phrase level:

• number of syllables in {previous, current, next} phrase

• number of words in {previous, current, next} phrase

• position of the current phrase in utterance {forward, backward}

• number of syllables in utterance

• number of words in utterance

• number of phrases in utterance

• length of phrase expressed in F0 samples - the sampling period is 5 ms.

So that the feature vector at phrase level is composed of the features above plus the

first 8 DCT coefficients at phrase level, a total of 20 parameters.

Syllable level:

• accent of the {previous, current, next} syllable

• number of phonemes in {previous, current, next} syllable

• number of syllables in {previous, current, next} phrase

• number of words in {previous, current, next} phrase

• position of current syllable in the current word {forward, backward}

• position of current syllable in the current phrase {forward, backward}
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• number of accented syllables before current syllable in the current phrase

• number of accented syllables after the current syllable in the current phrase

• the number of accented syllables from the previous accented syllable to the current

syllable

• the number of accented syllables from the current syllable to the next accented

syllable

• name of the vowel of the current syllable

• position of the current phrase in the utterance {forward, backward}

• number of syllables in utterance

• number of words in utterance

• number of phrases in utterance

• length of syllable expressed in F0 samples - the sampling period is 5 ms.

The syllable level feature vector therefore comprises a number of 40 parameters, i.e.

7 DCT coefficients and the features presented above.

5.3.4 Attribute Selection

The number of features contained in the HTS labels is rather high, so that using the

capabilities of the Weka5 tool, a preliminary attribute selection step was implemented.

Weka is a collection of algorithms for machine learning and data mining. For the attribute

selection, a greedy stepwise without backtracking algorithm was selected. Greedy stepwise

can either move forward or backward within the search space and select the best feature

using cross validation. The results indicate the use of the following sets of attributes:

Phrase Level

DCT0 number of syllables in previous phrase

number of words in previous phrase

number of syllables in current phrase

5http://www.cs.waikato.ac.nz/ml/weka/
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number of words in current phrase

position of current phrase in utterance forward

number of phrases in utterance

length of phrase expressed in F0 samples

DCT1 position of the phrase in utterance backward

length of phrase expressed in F0 samples

DCT2 position of the phrase in utterance backward

DCT3 number of syllables in current phrase

position of current phrase in utterance backward

number of syllables in current word

DCT4 position of the phrase in utterance backward

length of phrase expressed in F0 samples

DCT5 position of the phrase in utterance forward

number of phrases in utterance

DCT6 number of syllables in next utterance

number of syllables in previous utterance

DCT7 position of the phrase in utterance forward

number of phrases in utterance

Syllable Levell

DCT0 accent of the previous syllable

number of phonemes in previous syllable

position of the current syllable in the current word forward

position of the current syllable in the current word backward

number of previous accented syllables in the current phrase

number of next accented syllables in the current phrase

number of syllables from the previous accented syllable

the name of the vowel in the current syllable

DCT1 accent of the current syllable

number of phonemes in current syllable
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position of the current syllable in the current word forward

the name of the vowel in the current syllable

position of the current phrase in utterance

DCT2 accent of the previous syllable

number of phonemes in previous syllable

accent of the current syllable

the name of the vowel in the current syllable

accent of the next syllable

number of phonemes in next syllable

number of phrases in utterance

DCT3 number of phonemes in previous syllable

number of phonemes in current syllable

the name of the vowel in the current syllable

accent of the next syllable

number of phrases in utterance

DCT4 number of phonemes in previous syllable

position of the current syllable in the current word forward

position of the current syllable in the current word backward

number of syllables to next accented syllable

the name of the vowel in the current syllable

number of phonemes in next syllable

position of the current phrase in utterance backward

number of words in next phrase

number of phrases in utterance

length of the syllable expressed in F0 samples

DCT5 accent of the previous syllable

number of phonemes in previous syllable

accent of the current syllable
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position of the current syllable in current word forward

the name of the vowel in the current syllable

number of phonemes in next syllable

position of the phrase in the current utterance backward

length of the syllable expressed in F0 samples

DCT6 number of phonemes in previous syllable

position of the current syllable in the current word forward

number of syllables to the next accented syllable

the name of the vowel in the current syllable

accent of the next syllable

number of phonemes in the next syllable

position of the current syllable in the current phrase

number of syllables in the next phrase

length of the syllable expressed in F0 samples

The features presented above will be called the reduced set of features. A later eval-

uation estimated the performance trade using this reduced set instead of the full feature

set.

For a correct implementation of the DCT-based method, preliminary statistics of the

DCT coefficients are in order. The histograms of the phrase and syllable level DCT

coefficients of the rnd1 subset are shown in Fig. 5.7 and 5.6. Tables 5.3 and 5.4 present

the statistics of these histograms in terms of mean, standard deviation, minimum and

maximum values. And Table. 5.2 shows the average duration of pitch contour in each of

the two levels used.

Table 5.2: Statistics of the rnd1 subset phrase and syllable lengths, given in seconds.

Mean Std. dev. Min Max

Syllable 0.150 0.068 0.025 0.763

Phrase 1.694 3.161 0.319 8.265
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Figure 5.6: Phrase level DCT coefficients histograms

Table 5.3: Statistics of the phrase level DCT coefficients. 730 coefficients were analysed
corresponding to the number of phrases in rnd1

DCT Coefficient Mean Std. dev. Min. Max.

DCT0 4690.300 1318.300 1511.162 7762.336

DCT1 331.750 185.850 -366.800 1046.777

DCT2 -95.087 197.470 -961.830 526.653

DCT3 168.270 161.030 -314.262 652.300

DCT4 -57.100 151.600 -787.123 446.700

DCT5 94.427 130.15 0 -298.882 552.150

DCT6 -22.312 123.020 -501.100 409.565

DCT7 67.095 110.370 -335.890 390.000
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Figure 5.7: Syllable level DCT coefficients histograms

Table 5.4: Statistics of the syllable level DCT coefficients. 13029 coefficients were anal-
ysed corresponding to the number of syllables in rnd1

DCT coefficient Mean Std. dev. Min. Max.

DCT0 33.82 82.21 -365.68 433.13

DCT1 18.18 50.31 -528.90 566.26

DCT2 -99.45 34.84 -555.98 357.08

DCT3 58.54 25.63 -284.07 401.15

DCT4 -74.09 19.14 -349.23 201.05

DCT5 1.93 15.01 -225.75 317.72

DCT6 -0.04 12.96 -235.32 202.99
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5.4 Evaluation

5.4.1 Experiment 1 – CART Training

Using the features described in sections 5.3.3 and 5.3.4 the Attribute-Relation File Format

(ARFF) files used for the classification and regression tree training and testing were built.

ARFF is Weka compliant and it is a simple easily-readable file format.

A first step of the training refers to the determination of the best training and pre-

diction algorithm for the data set used. A selection of the algorithms presented in

[Witten and Frank, 2005] based on speed and efficiency was made. These include:

Linear Regression - is an approach to modelling the relationship between a scalar vari-

able and one or more input variables using linear functions.

M5 Rules - is an algorithm deriving regression rules from the model trees built using

M5. M5 is a decision tree which contains linear models in its leafs.

Additive Regression - is a method based on weighted sums of trees.Several trees are

built using a CART principle (for example M5) and their leaf nodes are weighted

into a new sum function.

Each of these algorithms were evaluated for both phrase and syllable level. In order

to evaluate the correct attribute selection previously described, the results of the reduced

set of features was also compared to the results of the full set. A separate tree is built for

each DCT coefficient. The results presented in tables 5.5, 5.6, 5.7 and 5.8 were obtained

using a 10-fold cross validation.

It can be observed that the reduced set of features has similar performances as the full

set of features. Based on the results presented, the Additive Regression algorithm was

selected for the prediction of all of the phrase level DCT coefficients. The same algorithm

was used for the syllable level DCT coefficients. Because of the small differences between

the full and reduced sets of features and in order to reduce complexity and computational

costs, the reduced set was selected for the prediction stage.
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Table 5.5: Results of the phrase level DCT coefficients prediction using the full set of
features. Columns in the table represent: [1] Correlation Coefficient, [2] Mean Absolute
Error, [3] Root Mean Squared Error, [4] Relative Absolute Error [%], [5] Root Relative
Squared Error [%].

DCT Coefficient Algorithm [1] [2] [3] [4] [5]

Linear Regression 0.97 52.94 69.42 19.14 20.51

DCT0 M5 Rules 0.96 280.65 379.53 25.72 28.83

Additive Regression 0.98 175.79 220.96 16.11 16.78

Linear Regression 0.57 116.33 152.91 79.43 81.74

DCT1 M5 Rules 0.62 110.54 146.20 75.48 78.15

Additive Regression 0.64 106.79 143.46 72.92 76.68

Linear Regression 0.53 126.49 167.28 80.82 84.41

DCT2 M5 Rules 0.65 111.58 150.25 71.29 75.88

Additive Regression 0.66 109.23 147.89 69.79 74.69

Linear Regression 0.47 114.61 141.66 85.95 87.93

DCT3 M5 Rules 0.59 102.89 129.73 77.16 80.52

Additive Regression 0.59 102.90 129.77 77.18 80.55

Linear Regression 0.40 106.83 138.83 91.73 91.57

DCT4 M5 Rules 0.52 99.03 129.00 85.03 85.09

Additive Regression 0.53 97.25 128.02 83.50 84.45

Linear Regression 0.34 96.02 122.00 91.06 93.60

DCT5 M5 Rules 0.39 93.30 119.72 88.48 91.86

Additive Regression 0.42 91.71 117.87 86.98 90.44

Linear Regression 0.29 89.28 117.53 96.12 95.47

DCT6 M5 Rules 0.42 84.79 111.59 91.29 90.64

Additive Regression 0.45 82.62 109.42 88.96 88.88

Linear Regression 0.20 85.61 108.15 97.64 97.99

DCT7 M5 Rules 0.21 85.21 109.02 97.18 98.77

Additive Regression 0.24 84.37 107.74 96.22 97.62
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Table 5.6: Results of the phrase level DCT coefficients prediction using the reduced set
of features. Columns in the table represent: [1] Correlation Coefficient, [2] Mean Absolute
Error, [3] Root Mean Squared Error, [4] Relative Absolute Error [%], [5] Root Relative
Squared Error [%].

DCT Coefficient Algorithm [1] [2] [3] [4] [5]

Linear Regression 0.97 202.56 262.74 18.56 19.96

DCT0 M5 Rules 0.96 275.77 375.04 25.27 28.49

Additive Regression 0.98 179.20 223.73 16.42 16.99

Linear Regression 0.54 119.99 156.43 81.93 83.62

DCT1 M5 Rules 0.62 111.36 146.17 76.04 78.13

Additive Regression 0.63 109.60 144.60 74.84 77.30

Linear Regression 0.53 128.75 167.06 82.26 84.37

DCT2 M5 Rules 0.55 127.80 164.74 81.65 83.20

Additive Regression 0.54 129.31 166.37 82.62 84.02

Linear Regression 0.44 110.23 171.60 88.95 87.93

DCT3 M5 Rules 0.53 112.90 135.37 77.16 82.26

Additive Regression 0.57 102.90 129.77 78.81 81.55

Linear Regression 0.38 116.38 140.33 93.73 95.70

DCT4 M5 Rules 0.52 97.25 132.20 84.25 86.42

Additive Regression 0.53 101.30 131.10 84.03 86.09

Linear Regression 0.32 97.22 125.33 92.06 96.60

DCT5 M5 Rules 0.37 92.71 117.87 86.98 91.24

Additive Regression 0.39 93.30 120.72 89.48 92.86

Linear Regression 0.27 90.82 118.53 97.21 96.27

DCT6 M5 Rules 0.42 83.22 110.22 89.96 92.88

Additive Regression 0.42 85.97 111.77 92.29 91.64

Linear Regression 0.19 87.23 110.15 98.64 97.99

DCT7 M5 Rules 0.20 85.37 110.40 96.22 97.62

Additive Regression 0.21 86.21 109.30 97.60 99.77
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Table 5.7: Results of the syllable level DCT coefficients prediction using the full set of
features. Columns in the table represent: [1] Correlation Coefficient, [2] Mean Absolute
Error, [3] Root Mean Squared Error, [4] Relative Absolute Error [%], [5] Root Relative
Squared Error [%].

DCT Coefficient Algorithm [1] [2] [3] [4] [5]

Linear Regression 0.40 58.01 75.24 89.61 91.52

DCT0 M5 Rules 0.49 54.72 71.56 84.52 87.04

Additive Regression 0.59 50.57 66.30 78.11 80.64

Linear Regression 0.23 31.10 48.09 96.84 97.28

DCT1 M5 Rules 0.34 29.94 46.95 93.23 94.98

Additive Regression 0.37 29.47 46.18 91.76 93.42

Linear Regression 0.25 22.86 34.14 96.22 96.81

DCT2 M5 Rules 0.28 22.46 33.82 94.53 95.91

Additive Regression 0.30 22.36 33.66 94.14 95.45

Linear Regression 0.26 15.07 24.95 98.11 96.57

DCT3 M5 Rules 0.26 15.05 25.38 98.02 98.23

Additive Regression 0.28 15.04 25.16 97.94 97.39

Linear Regression 0.19 11.13 18.82 102.74 98.10

DCT4 M5 Rules 0.23 10.89 18.89 100.49 98.49

Additive Regression 0.24 10.89 18.86 100.48 98.03

Linear Regression 0.05 8.72 15.00 99.84 99.91

DCT5 M5 Rules 0.02 8.79 15.33 100.65 102.11

Additive Regression 0.05 8.73 15.04 100.01 100.20

Linear Regression 0.08 7.55 12.92 100.81 99.69

DCT6 M5 Rules 0.10 7.58 13.05 101.26 100.69

Additive Regression 0.05 7.54 13.06 100.74 100.73
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Table 5.8: Results of the syllable level DCT coefficients prediction using the reduced
set of features. Columns in the table represent: [1] Correlation Coefficient, [2] Mean
Absolute Error, [3] Root Mean Squared Error, [4] Relative Absolute Error [%], [5] Root
Relative Squared Error [%].

DCT Coefficient Algorithm [1] [2] [3] [4] [5]

Linear Regression 0.37 58.67 76.24 90.62 92.73

DCT0 M5 Rules 0.49 54.72 71.56 84.52 87.04

Additive Regression 0.52 53.55 70.15 82.72 85.32

Linear Regression 0.20 30.80 48.35 95.92 97.81

DCT1 M5 Rules 0.21 30.68 48.29 95.55 97.69

Additive Regression 0.21 30.61 48.24 95.32 97.59

Linear Regression 0.17 23.23 34.73 97.79 98.46

DCT2 M5 Rules 0.16 23.23 34.74 97.81 97.86

Additive Regression 0.17 23.23 34.73 97.79 98.46

Linear Regression 0.25 14.89 24.99 96.97 96.74

DCT3 M5 Rules 0.26 14.84 24.93 96.68 96.50

Additive Regression 0.26 14.84 24.93 96.65 96.48

Linear Regression 0.15 10.88 18.95 100.44 98.83

DCT4 M5 Rules 0.18 10.97 18.91 101.21 98.58

Additive Regression 0.19 10.95 18.86 101.06 98.32

Linear Regression 0.05 8.71 15.00 99.68 99.88

DCT5 M5 Rules 0.06 8.71 15.00 99.77 99.90

Additive Regression 0.06 8.72 15.02 99.87 100.03

Linear Regression 0.08 7.52 12.92 100.50 99.65

DCT6 M5 Rules 0.07 7.56 12.93 101.01 99.79

Additive Regression 0.10 7.53 12.90 100.45 99.53
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5.4.2 Experiment 2 – DCT Coefficients Prediction using Addi-

tive Regression

All of the data preprocessing and training has been done in order to prepare a prediction

model for the DCT coefficients using only the features available in HTS labels, even

more, the reduced set of features. The DCT coefficients were extracted from the linear

interpolated F0 contours of the rnd1 subset of the RSS corpus at phrase and syllable level.

Classification and regression trees were then trained for each of the coefficients separately.

Using the best algorithm determined at this stage, the prediction of the DCT coefficients

from the testing set of 10 utterances was performed. Table 5.9 presents the estimation

error for each of the 15 DCT coefficients. It can be observed that the higher the order of

the coefficient, the higher the error. This is due to the wider standard deviation and less

correlation factor between the features used and the coefficients.

Table 5.9: Results of the DCT coefficients prediction using the Additive Regression
algorithm. Columns in the table represent: [1] Correlation Coefficient, [2] Mean Absolute
Error, [3] Root Mean Squared Error, [4] Relative Absolute Error [%], [5] Root Relative
Squared Error [%].

DCT Coefficient [1] [2] [3] [4] [5]

Phrase DCT0 0.99 108.99 133.89 8.54 9.29

DCT1 0.57 104.64 119.99 105.10 92.78

DCT2 0.64 114.48 141.04 93.14 80.71

DCT3 0.59 78.77 97.60 71.63 75.76

DCT4 0.59 81.83 96.40 78.90 72.59

DCT5 0.52 61.79 86.01 75.74 89.91

DCT6 0.63 43.04 53.32 88.98 83.99

DCT7 0.72 46.80 71.69 61.89 72.72

Syllable DCT0 0.66 38.12 49.57 74.36 76.60

DCT1 0.45 24.26 36.13 87.96 93.79

DCT2 0.28 20.16 29.88 94.26 96.86

DCT3 0.36 13.03 19.58 94.90 94.78

DCT4 0.14 10.02 15.24 104.08 104.78

DCT5 0.15 18.73 15.04 100.00 100.20

DCT6 0.15 7.54 13.06 100.74 100.73
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5.4.3 Experiment 3 – Listening Test

A secondary experiment was conducted in order to determine the perceivable error of the

F0 contour estimation. It involved the synthesis of the test sentences using the benchmark

HTS system generated F0 contour versus the predicted F0 contour. Figure 4 and Figure

5 show a comparison between these contours. Although it can be easily observed that

higher variations in the F0 contour cannot be followed with accuracy by the predicted

coefficients, the mean error for the global F0 contour is 15 Hz, which is comparable to the

one obtained by [Latorre and Akamine, 2008] or [Sun, 2002], 13Hz for the syllable level

and 8 Hz for the phrase level. The higher error value for the syllable level supports the

idea of introducing a separate level for phonemes as future work. A small listening test

was also set up, 10 listeners were presented with 20 pairs of utterances consisting of the

baseline synthesiser and the proposed method’s outputs. The listeners had to choose on a

scale of 1-No difference to 5-Totally different the degree of similarity between the samples.

The overall MOS score, 2.5, showed no significant differences between the baseline system

and the proposed method, meaning that the estimation method using even a minimum

amount of purely textual data is efficient and correct.

5.5 Summary

This chapter introduced a new model for F0 parametrisation using the superpositional

principle and the discrete cosine transform. The problems of F0 modelling and pos-

sible solutions were first identified. Some of the most important pitch modelling and

parametrising techniques were briefly presented, such as the ToBI and Fujisaki models.

Because these methods require a subjective annotation and lack some essential statistical

characteristics, a method based on the DCT was adopted. DCT has been shown to adhere

to the superpositional model and can parametrise F0 contours with minimum error even

with a reduced number of coefficients.

The proposed method uses the phrase and syllable levels of intonation, where the sylla-

ble level is the result of the original F0 contour minus the inverse DCT of the phrase level

coefficients. The prediction of the DCT coefficients from the purely textual information

contained in the HTS labels is then performed. Three CART trees were compared: M5
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rules, additive regression and linear regression. Also, in an attempt to reduce the number

of features used, a greedy stepwise attribute selection method was applied, evidentiating

the best correlates between each DCT coefficient and the features used. The results of

the CART training and prediction for each DCT coefficient is presented in terms of cor-

relation and error. The best performances in a 5-fold cross validation of the training set,

was obtained by the additive regression algorithm.

The algorithm was then used to predict the F0 contours of a test set of 10 utterances.

The mean error obtained in the prediction stage is around 15 Hz, which is comparable to

other statistical methods of F0 modelling. A listening test was also performed, and showed

no significant perceptual differences between the original and estimated F0 contours.

The entire chapter is also a preliminary analysis of the DCT parametrisation capabil-

ities in order to apply it to the interactive intonation optimisation presented in the next

chapter.
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(a)

(b)

Figure 5.8: Original and predicted F0 contours - utterances: (a) Băimăreanul urăşte
lipsa de punctualitate şi făţărnicia. and (b) În acest cămin au prioritate studenţii ı̂n ani
terminali.
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Chapter 6

Optimising the F0 Contour with

Interactive Non-Expert Feedback

6.1 Introduction

Over the last decade text-to-speech systems have evolved to a point where in certain

scenarios, non-expert listeners cannot distinguish between human and synthetic voices

with 100% accuracy. One problem still arises when trying to obtain a natural, more

expressive sounding voice. Due to the subjectivity of expression and emotion realisation

in speech, humans cannot objectively determine if one system is more expressive than the

other.

In order to achieve a more dynamic prosody, several methods have been applied

([Tao et al., 2006], [Yamagishi et al., 2005]), some of which have had more success than

others and all of which include intonation modelling as one of the key aspects. Intona-

tion modelling refers to the manipulation of the pitch or fundamental frequency. The

expressivity of speech is usually attributed to a dynamic range of pitch values. But in

the design of any speech synthesis system (both concatenative and parametric), one im-

portant requirement is the flat intonation of the speech corpus, leaving limited options

for the synthesised pitch contours.Therefore a solution which can extend the pitch range

starting from a flat intonation input is needed.

Also, another problem is that the TTS systems have is that their output cannot be

modified by a non-expert user in a simple manner. The end-user should be able to adapt
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the synthetic speech to its preference with minimum feedback. The modifications should

be made possible by simply comparing speech samples, as the use of other parameters

involves a degree of learning and understanding on behalf of the user. The later method

has been applied in some speech synthesisers, such as [Ferencz, 1997], where the user

can adjust the pitch and duration of certain voice segments by inputing values for them.

High-quality commercial systems can use tags (for example XML) to adjust the same

parameters, or insert additional textual data1.

An interactive intonation optimisation method based on the pitch contour parametri-

sation and evolution strategies is presented. The Discrete Cosine Transform (DCT) is

applied to the phrase level pitch contour. Then, the genome is encoded as a vector that

contains 7 most significant DCT coefficients. Based on this initial individual, new speech

samples are obtained using an interactive Covariance Matrix Adaptation Evolution Strat-

egy (CMA-ES) algorithm. A series of parameters involved in the process are evaluated,

such as the initial standard deviation, population size, the dynamic expansion of the pitch

over the generations and the naturalness and expressivity of the resulted individuals. The

results provide the guidelines for the setup of an interactive optimisation system in which

the users can subjectively select the individual which best suits their expectations with

minimum amount of fatigue.

6.1.1 Problem statement

In this subsection some aspects of the current state-of-the-art speech synthesisers which

limit the expressiveness of the result are emphasised:

Issue #1: Some of the best TTS systems benefit from the prior acquisition of a large

speech corpus and in some cases extensive hand labelling and rule-based intonation. But

this implies a large amount of effort and resources, which are not available for the majority

of languages.

Issue #2: Most of the current TTS systems provide the user with a single unchange-

able result which can sometimes lack the emphasis or expressivity the user might have

hoped for.

1Loquendo http://www.loquendo.com/en/demo-center/interactive-tts-demo/ allows the user
to insert tags like item=Cry 01 for specific intonational phrases or emotions
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Issue #3: If the results of a system can be improved, it usually implies either addi-

tional annotation of the text or a trained specialist required to rebuild most or all of the

synthesis system.

Issue #4: Lately, there have been studies concerning more objective evaluations of

the speech synthesis, but in the end the human is the one to evaluate the result and this

is done in a purely subjective manner.

6.2 Evolutionary Algorithms and Strategies

Evolutionary computation is a subclass of artificial intelligence, or more specifically of

the computational intelligence and addresses problems of combinational optimisation

[Jong, 2006]. Evolutionary computation is based on the natural process of individual

selection by using the phenomenons of gene mutation and crossover. So that the evolution-

ary techniques solve metaheuristic optimisation problems. Subclasses of the evolutionary

computation are: evolutionary algorithms, genetic algorithms, evolution strategies, ge-

netic programing, swarm intelligence, ant-colony optimisation and swarm optimisation of

the particles.

Evolutionary algorithms (EA) form a subclass of the evolutionary computation

and operate with a population of potential individuals applying the survival of the fittest

principle to produce better approximations of the solution. In each generation a new

set of approximations is created by using a fitness function. The new population is

then combined using genetic operators [Geatbox-webpage, 2011]. These operators model

the natural processes of selection, recombination, mutation, migration, localisation and

vicinity.

The problems solved by this type of algorithms refer to search and optimisation meth-

ods, problems that can be described using an objective fitness function. The possible

solutions of an optimisation problem are the population’s individuals, and the cost func-

tion determines the environment the individuals live in. In this process, the mutations and

recombinations ofer the necessary diversity, and the selection imposes a rise in the qual-

ity of the individuals. Evolutionary algorithms differ from the traditional optimisation

methods through the following [Rutkowski, 2008]:

99



Chapter 6. Optimising the F0 Contour with Interactive Non-Expert Feedback

Population

Parents

Offsprings

Initialisation Parent selection

Survivors selection

Recombinations

Mutations

Stopping criteria

Figure 6.1: Block diagram of an evolutionary algorithm.

1. EA do not process the task parameters directly, but their coded form

2. EA realise the search starting from a population of points and not from a individual

point

3. EA use just objective functions and not their derivatives or other additional infor-

mation

4. EA use probabilistic selection rules at the expense of deterministic rules

The concepts with which the evolutionary algorithms operate are the same as in

genetics [Rutkowski, 2008]:

Population - a set of fixed dimension individuals.

Individuals - of a population in a genetic algorithm are tasks coded as chromosomes,

which mean solutions or points in the search space. The individuals are sometimes

called organisms.

Chromosomes - or chains or code sequences - are ordered sequences of genes.

Gene - or characteristic, sign, detector - represents a single element of the genotype, of

the chromosomes in particular.

Genotype - or structure - is a set of chromosomes of a particular individual. So that

the individuals of a population can be genotypes or a single chromosome (in the
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case that the genotype is composed of a single chromosome, case oftenly used n

implementation)

Fenotype - is a set of values corresponding to a certain genotype, which is a decoded

structure and represents a set of task parameters (a solution or a point the search

space).

Allel - the value of a gene, also called the characteristic value or the characteristic variant.

Locus - is an indicator of the position of a gene in the chain, or the chromosome.

The components of an evolutionary algorithm [Eiben and Smith, 2010] are described

below and also presented in Fig. 6.1:

Representation - specifying a link between fenotype and genotype. The elements of

the fenotype are called candidate solutions, and the individuals define points in the

search space. The search space is also called fenotype space. In the genotype, the

elements are called chromosomes, and the determined space is a genotype space.

Fitness function - has the role to represent the adaptation requisites. It forms a se-

lection base and thus allows improvements. In other words, it determines what an

improvement means. Technically, it is a procedure or a function which attributes

a measure of the genotype quality. It is called adaptation or evaluation function.

It is a measure of adaptability of an individual within the population. The func-

tion is extremely important because based on its value the best adapted individuals

are selected, meaning the individuals with the highest fitness, according with the

principle of the survival of the fittest ir survival of the strongest. It has a mojor

impact on the results of the algorithm and has to be optimally defined. In optimi-

sation problems, the fitness function is called objective function. In minimisation

problems, the objective function is transformed into a maximisation function. In

evolutionary algorithms, at each iteration, the fitness of the population’s individu-

als is determined by the value of the fitness function, and using this value, the new

generation is created. This population is composed of a set of probable solutions to

the problem. An iteration of the algorithm is called generation, and the generated

population is called the new generation or offspring population.
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Population - has the role to maintain the representations of the possible solutions. A

population is a multiset of the genotype. The populations represents the evolution

unit. The individuals are static objects that do not modify or adapt, the popula-

tion does this. In more sofisticated EA, the population has an additional spatial

structure, by defining a distance or a vicinity relation. In most of the cases the

population dimension is constant. The diversity of a population is a measure of the

number of different solutions, that can be determined by the distinct values of the

fitness function or by the number of different fenotypes or genotypes.

Parent selection mechanism - distinguishes between individuals based on their qual-

ity, to allow for the best individuals to become parents of the new generation. An

individual is a parent if it has been selected in order to realise a variation and create

an offspring.Along with the survivor selection, parent selection is responsible for

the improvement of the quality of the system. In evolutionary computation, the

selection is usually probabilistic, so that the individuals with a higher quality have

a higher chance of becoming parents.

Variation, recombination and mutation operators - have the role of creating new

individuals. It is similar to the generation of new candidate solutions. The vari-

ation operators are split in two categories: mutations and recombinations. The

mutations generate random impartial modifications. They are stochastic opera-

tors – the offspring is the results of a series of random choices. Recombination –

determines the generation of offspring using the recombination or crossover of the

parents’ genotype. The choice of the parents’ genotype to be combined is random.

Survivor selection mechanism - determines a hierarchy of the individuals based on

their quality. It is also called replacement. The decision is made based on the values

of the fitness functions. As opposed to the parent selection, the survivor selection

is often deterministic, the individuals are ordered, and the first N are selected to

generate the next generation.

Initialisation - is usually done at random. Some conditions can be applied to determine

an initial population with a good fitness.
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Stopping criteria - depends on the chosen method: if there is a certain optimal value

of the fitness, then reaching this level determines the algorithm to stop. If this level

cannot be achieved, other conditions can be applied, such as the number of iterations

or generations, or when the diversity of the population is below a threshold.

The most important evolutionary algorithms are: genetic algorithms, evolutionary

computation and evolution strategies. These types of algorithms will be briefly presented

in the following sections, with an emphasis on evolution strategies which are applied in

the proposed method.

6.2.1 Genetic Algorithms

Genetic algorithms (GA) represent a heuristic search method which imitates the pro-

cesses of natural selection. They are used in the search and optimisation solutions. GA

follow closely the steps of the evolutionary algorithms: intialisation, selection, reproduc-

tion and stopping criteria[Jong, 2006, Rutkowski, 2008]. The detailed steps are as follows:

• random generation of m parents

• fitness function computation for each of the population’s individuals

• the definition of the selection probabilities for each of the parents so that they are

directly proportional with the fitness function

• the generation of m offspring by the probabilistic selection of the parents

• selection of just the offspring, setting aside the parents

It is important to note the proportionality of the fitness function. Using its value, the

medium fitness individuals will produce on average a single offspring, and the ones with

an above average fitness will produce more than an offspring. On the other hand, because

the parents are not present in the next generation, it is possible that the mean value of

the fitness to drop, which is undesirable in complex problems.

6.2.2 Evolutionary Computation

Initially, evolutionary programing (EP) was developed in the context of determining the

grammar of unknown languages. The grammar was modelled through the use of a fi-
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nite state machine undergoing evolution. The results were promising, but evolutionary

programming became more useful when it introduces numeric optimisation.

This method is similar to evolution strategies. In evolutionary programming algo-

rithms, the new population is create using mutation of each parent individual. In an

evolution strategy on the other hand, each individual has the same chance of appearance

in a temporary population unto which genetic operators are applied. The new parent

population is created using a classification selection which is applied both to old popula-

tions’ individuals and to the new generation. Individuals’ mutations in EP represents a

random perturbation of the value of a gene [Rutkowski, 2008]. So that the main variation

method is mutation, the population members are considered as being part of a certain

species, but not the same, so that each parent creates an offspring. EP implements an

elitist strategy of survival, in which only the top 50% of the individuals survive, which

determines an increase in the fitness by reducing diversity, but in the same time can lead

to suboptimal solutions [Jong, 2006].

6.2.3 Evolution Strategies

Evolution strategies (ES) are an optimisation technique based on the ideas of evolu-

tion and adaptation. They use problem dependent representation, and the main search

operators are mutation and selection [Jong, 2006].

In the same way as the genetic algorithms, ES operate over the potential solution

population and use the selection principle and survival of the fittest. The differences rely

mainly in the individual representation method. Evolution strategies use real number

vectors, while the genetic algorithms use binary valued vectors. On the other hand, genetic

algorithms select an offspring population equal to the parent population. The probability

of selecting an individual depends on the value of the fitness function. The result can

contain even the weakest of the chromosomes. Within ES, a temporary population is

created in order to select the best individuals, and this process is not recurrent. The

selection is deterministic.

The third difference lies in the fact that in evolution strategies the order of the se-

lection and recombination processes is reversed. Recombination is the first process, and

then the selection. An offspring is the result of a crossover between two parents and some
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mutations. GA selects first the individuals and only after that applies the genetic opera-

tors. A final difference is that the parameters of the genetic algorithms remain constant

from one generation to the other, while in ES, these parameters are updated constantly

[Rutkowski, 2008].

ES have a few basic types:

(1 + 1) strategy - a single basis chromosome is processed. The algorithm starts by

randomly selecting the values for a vector X’s components. In each generation a

new Y individual is created as a result of a mutation. The fitness of the individuals

is compared, and the highest value becomes the basic chromosome of the next

generation. There is no crossover.

(µ+ λ) strategy - the algorithm starts from a random parent generation which con-

tains µ individuals. A temporary generation T is created through reproduction.

Reproduction is the random selection of λ individuals from the initial population

and placing them in the temporary population. The individuals of the T generation

suffer crossover and mutation operations, resulting a new offspring population O

with a dimension λ. The best µ individuals are selected from P ∪ O and a new

parent generation of dimension µ is created.

(µ, λ) strategy - the difference between this strategy and the previous one is that the

new P generation with µ individuals is selected just out of the first λ individuals of

the O generation. The condition µ > λ has to be satisfied. The advantage over the

(µ+ λ) strategy is that in the previous one, the popualtion could be dominated by

a single high fitness individual, but with too high or too low standard deviation. In

(µ, λ) the old individuals are not transfered to the new reproduction base.

CMA-ES

The CMA-ES (Covariance Matrix Adaptation - Evolution Strategy) is a stochastic method

for real-parameter (continuous domain) optimization of non-linear, non-convex functions.

CMA-ES was proposed by Hansen and Ostermeier [Hansen and Ostermeier, 1996] as an

evolutionary algorithm to solve unconstrained or bounded constraint, non-linear optimisa-

tion problems defined in a continuous domain. In an evolutionary algorithm, a population
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of genetic representations of the solution space, called individuals, is updated over a series

of iterations, called generations. At each generation, the best individuals are selected as

parents for the next generation. The function used to evaluate individuals is called the

fitness function.

The search space is explored according to the genetic operations used to update the

individuals in the parent population and generate new offspring. In the case of evolution

strategy (ES), the selection and mutation operators are primarily used, in contrast to the

genetic algorithm (GA) proposed by Holland [Holland, 1975], which considers a third op-

erator – crossover. Also, in GA the number of mutated genes per individual is determined

by the mutation probability, while in ES mutation is applied to all genes, slightly and at

random.

If mutation is according to a multivariate normal distribution of mean m and covari-

ance matrix C, then CMA-ES is a method to estimate C in order to minimise the search

cost (number of evaluations). First, for the mean vector m ∈ Rn, which is assimilated to

the preferred solution, new individuals are sampled according to the normal distribution

described by C ∈ Rn×n:

xi = m+ σyi (6.1)

yi ∼ Ni(0, C), i = 1..λ

where λ is the size of the offspring population and σ ∈ R+ is the step size.

Second, sampled individuals are evaluated using the defined fitness function and the

new population is selected. There are two widely used strategies for selection: (µ+λ)-ES

and (µ, λ)-ES, where µ represents the size of the parent population. In (µ + λ)-ES, to

keep the population constant, the λ worst individuals are discarded after the sampling

process. In (µ, λ)-ES all the parent individuals are discarded from the new population in

favour of the λ new offspring.

Third, m, C and σ are updated. In the case of (µ, λ)-ES, which is the strategy chosen

for implementation in this solution, the new mean is calculated as follows:

m =

µ∑

i=1

wixi (6.2)

106



6.3. Interactive Intonation Optimisation

w1 ≥ .. ≥ wµ,

µ∑

i=1

wi = 1

where xi is the i-th ranked solution vector (f(x1) ≤ .. ≤ f(xλ)) and wi is the weight

for sample xi.

The covariance matrix C determines the shape of the distribution ellipsoid and it is

updated to increase the likelihood of previously successful steps. Details about updating

C and σ can be found in [Hansen, 2005] .

6.3 Interactive Intonation Optimisation

The issues presented in the Problem statement section at the beginning of this chapter are

partially addressed through the method presented next [Stan et al., 2011a]. The method

is as follows: given the output of a synthesiser, the user can opt for a further enhancement

of its intonation. The system then evaluates the initial pitch contour and outputs a small

number of different versions of the same utterance. Provided the user subjectively selects

the best individual in each set, the next generation is built starting from this selection.

The dialogue stops when the user considers one of a generation’s individual satisfactory.

The solution for the pitch parametrisation is the Discrete Cosine Transform (DCT) and for

the interactive step, the Covariance Matrix Adaptation-Evolution Strategy (CMA-ES).

This method is useful in the situation where non-expert users would like to change

the output of a speech synthesiser to their preference. Also, under resourced languages

or limited availability of speech corpora could benefit from such a method. The prosodic

enhancements selected by the user could provide long-term feedback for the developer or

could lead to a user-adaptive speech synthesis system.

6.3.1 Related Work

To the best of the author’s knowledge, evolution strategies have not been previously

applied to speech synthesis. However, the related genetic algorithms have been used

in articulatory [D’Este and Bakker, 2010] or neural networks based [Moisa et al., 2001]

speech synthesisers. [Moisa et al., 2001] presents a method of supervised training of neural

networks using evolutionary algorithms. The network structure is a hyper-sphere.
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A study of interactive genetic algorithms applied to emotional speech synthesis is

presented in [Lv et al., 2009]. The authors use the XML annotation of prosody in Mi-

crosoft Speech SDK and try to convert neutral speech to one of the six basic emotions:

happiness, anger, fear, disgust, surprise and sadness. The XML tags of the synthesised

speech comprise the genome. Listeners are asked to select among 10 speech samples at

each generation and to stop when they consider the emotion in one of the speech samples

consistent with the desired one. The results are then compared with an expert emotional

speech synthesis system. Listeners had to rate on average 100 versions of the speech

sample, going as far as the 10th generation of the algorithm. The prosody adaptation is

realised at word level and not at phrase or utterance level.

Some other applications of the evolution strategies can be found in the conversion of

the quality of the synthesised voices [Sato, 2005], or in the optimisation of the Markov

models for signal modelling [Huda et al., 2009]. Interactive evolutionary computation has,

on the other hand, been applied to music synthesis [McDermott et al., 2010], and music

composition [Fukumoto, 2010], [Marques et al., 2010].

6.3.2 DCT Parametrisation of the phrase level F0 Contour

The method proposed addresses the issue of modelling the phrase level intonation,

or trend. Starting from a flat intonation, a more dynamic and expressive contour is

derived. Therefore, it is considered that the phrase layer is represented by the inverse

DCT transform of the DCT1 to DCT7 coefficients of the pitch DCT. This assumption is

also supported by the results presented in [Teutenberg et al., 2008] and previous chapter.

DCT0 represents the mean of the curve and in this case it is speaker dependent. Using

DCT0 in the genome encoding would undesirably change the pitch of the speaker, the focus

being on the overall trend of the phrase intonation. The phrase level is then subtracted

from the overall contour, and the result is retained and will be referred to as high level

pitch information. Fig. 6.2 presents an example of a pitch contour, the phrase level

contour based on the inverse DCT of the DCT1-DCT7 coefficients and the high level

pitch information. It can be observed that the phrase level contour represents the relative

trend of the voiced segments intonation, while the high level information has a relatively

flat contour with variations given by the word, syllable and phoneme levels.
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Figure 6.2: An example of a pitch contour decomposition into phrase level and high level
pitch information. The phrase level contour is based on the inverse DCT of DCT1-DCT7
coefficients – utterance ”Ce mai faci?” (”How are you?”).

Because DCT cannot parametrise fast variations with a small number of coefficients,

the unvoiced segments of the F0 contour were interpolated using a cubic function. During

the interactive step, the inverse DCT transform is applied to the winner’s genome, the

high level pitch information is added and the speech is synthesised using the resulted F0

contour.

6.3.3 Proposed solution

Combining the potential of the DCT parametrisation and evolution strategies, an inter-

active solution for the intonation optimisation problem is introduced, and requires no

previous specific knowledge of speech technology. To achieve this, three issues need to be

solved: 1) generate relevant synthetic speech samples for a user to chose from, 2) minimise

user fatigue and 3) apply the user feedback to improve the intonation of the utterance.

The first issue is solved by using CMA-ES to generate different speech samples, nor-

mally distributed around the baseline output of a Romanian speech synthesis system

[Stan et al., 2011b] based on HTS (Hidden Markov Models Speech Synthesis System)

[Zen et al., 2007a]. The genome is encoded using a vector of 7 genes, where each gene

stores the value of a DCT coefficient, from DCT1 to DCT7. It starts with an initial

mean vector m that stores the DCT coefficients of the F0 phrase level generated by the
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Figure 6.3: Flow chart of the proposed method for the interactive intonation optimisation
algorithm.

HTS system and an initial covariance matrix C = I ∈ R7×7. In each generation, new

individuals are sampled according to Eq. (6.1).

In the next step, the user needs to evaluate generated individuals. If the population

size is too large, the user may get tired before a suitable individual is found or might not

spot significant differences between the individuals. On the other hand, if the population

size is too small and the search space is not properly explored, a suitable individual

may not be found. CMA-ES is known to converge faster even with smaller population

than other evolutionary algorithms, but it was not previously applied to solve interactive

problems. On the other hand, interactive genetic algorithms (IGA) have been extensively

studied, but do not converge as fast as CMA-ES for non-linear non-convex problems.

Faster convergence means fewer evaluations, therefore reducing user fatigue.

For the interactive version of CMA-ES, a single elimination tournament fitness func-

tion [Panait and Luke, 2002] was used. In this case, the individuals are paired at random

and play one game per pair. Losers of the game are eliminated from the tournament.

The process repeats until a single champion is left. The fitness value of each individual

is equal to the number of played games. Each pair of individuals is presented to the user

in the form of two speech samples. Being a subjective evaluation, the choice would best
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suit the user’s requirements, thus giving the winner of a population.

The fitness value is used by CMA-ES to update mean vector m, the covariance matrix

C and the standard deviation σ. A new population of individuals is sampled based on

the updated values and the process repeats. The flow chart of the proposed method is

presented in Fig. 6.3.

6.4 Evaluation

The results presented below focus on establishing the correct scenario for the interactive

application and on the ease of use on behalf of the listeners/users. This implies the evalu-

ation of several parameters involved, such as: initial standard deviation of the population

– gives the amount of dynamic expansion of pitch –, the population size – determines

the number of samples the user has to evaluate in each generation, the expressivity and

naturalness of the generated individuals – assures correct values for the pitch contour.

6.4.1 Experiment 1 - Initial Standard Deviation of the Popula-

tion

As a preliminary step in defining the standard deviation of the population, some of the

statistical result presented in chapter 5 are reviewed. These include the analysis all

the DCT coefficients within the rnd1 subset of the Romanian Speech Synthesis corpus

[Stan et al., 2011b]. The number of phrases within this subset is 730 with an average

length of 1.7 seconds. The intonation of the speech is flat, declarative. DCT0 was included

as well for an overall view as it represents the mean of the pitch contour and it is speaker

dependent. This coefficient was not used in the estimation of the phrase level contour.

The means and standard deviations of the coefficients are presented in Table 6.1, also

including their corresponding F0 values in Hz. From Table 6.1 it can be observed that

DCT0 can be a good indicator of the speaker’s fundamental frequency, with an average

value of 254Hz over the entire speech corpus.

The average pitch contour resulted from the mean values of the DCT coefficients and

the average duration of the rnd1 subset is shown in Fig. 6.4. The pitch contour corre-

sponds to a declarative intonational pattern corresponding to the speech data analysed.
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Table 6.1: Means and standard deviation of the DCT coefficients in rnd1 subset with
corresponding variations in Hz for an average length of 1.7 seconds.

’Coefficient Mean Mean F0 Standard Maximum F0
[Hz] deviation deviation [Hz]

- 1 std dev +1 std dev
DCT0 4690.300 251-257 1318.300 179-186 322-329
DCT1 331.750 ± 4 185.850 ±12 ±40
DCT2 -95.087 ±7 197.470 ±22 ±7
DCT3 168.270 ±12 161.030 ±0.55 ±25
DCT4 -57.100 ±4 151.600 ±16 ±7
DCT5 94.427 ±7 130.150 ±2 ±17
DCT6 -22.312 ±1 123.020 ±11 ±7
DCT7 67.095 ±5 110.370 ±3 ±13
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Figure 6.4: Result of the pitch contour generated from the mean values of the DCT0-
DCT7 coefficients within the rnd1 subset, and an average phrase length of 1.7 seconds

DCT1 has the most important influence in the F0 contour after DCT0. The mean value

of the DCT1 coefficient is 331.75 with a standard deviation of 185.85 and the maximum

F0 variation is given by the +1 std. dev. (i.e. 331.75+185.85 = 517.6) of around 40 Hz.

One of the issues addressed in this thesis is the expansion of the pitch range. This means

that having a standard deviation of the flat intonation speech corpus, a higher value for

it should be imposed while generating new speech samples, but it should not go up to

the point where the generated pitch contours contain F0 values which are not natural. In

Fig. 6.5 the third generation for an initial standard deviation of 150 and 350 respectively

is compared. It can be observed in the 350 case that individual 3 has F0 values going
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Figure 6.5: The 3rd generation population of the F0 contour, with an initial standard
deviation of 150 and 350 respectively. Original F0 represents the pitch contour produced
by the synthesiser – utterance ”Ce mai faci?” (”How are you?”)

as low as 50 Hz – unnatural, while for a standard deviation of 150, the F0 contours do

not vary too much from the original one and lead to a less dynamic output. Given these

results, a standard deviation of 250 was selected. An important aspect to be noticed from

Table 6.1 is that all the 7 coefficients have approximately the same standard deviation.

This means that imposing a variation based on DCT1 does not exceed natural values for

the rest of the coefficients.

6.4.2 Experiment 2 - Population Size

The single elimination tournament fitness used to evaluate the individuals requires the

user to provide feedback for n − 1 games, where n is the population size. So that the

population size has a great importance in setting up the interactive application. Several
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Figure 6.6: Population size variation. Original F0 represents the pitch contour produced
by the synthesiser – utterance ”Ce mai faci?” (”How are you?”).

values have been selected for it and the results are shown in Fig. 6.6. Although the

highest the number of individuals the more samples the user can choose from, this is not

necessarily a good thing in the context of user fatigue. But having only 2 individuals does

not offer enough options for the user to choose from. Therefore the use of 4 individuals

per generation is suggested as a compromise between sample variability and user fatigue.

6.4.3 Experiment 3 - Dynamic Expansion of the Pitch

Another evaluation is the observation of the modification of the pitch contour from one

generation to the other. Fig. 6.7 presents the variation of F0 from the initial population

to the third. It can be observed that starting with a rather flat contour, by the third gen-

eration the dynamics of the pitch are much more expanded, resulting a higher intonation
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Figure 6.7: Evolution of the F0 contour over 3 generations, standard deviation = 250,
phrase “Ce mai faci?” (”How are you?”). Original F0 represents the pitch contour
produced by the synthesiser.

variability within and between generations. It is also interesting to observe the phrase

level contours (Fig. 6.8). This is a more relevant evaluation as it shows the different

trends generated by CMA-ES and the trend selected by the user in each generation. The

selected trend can be used in the adaptation of the overall synthesis. In the example,

the user selected an intonation with a high starting point and a descending slope, while

another user could have chosen individual 1 which contains an initial ascending slope.

6.4.4 Experiment 4 - Listening Test

In order to establish the naturalness of the generated individuals and the enhanced ex-

pressivity of the winners of each generation, a small listening test was conducted. At

first, a user was asked to select the winners over 4 generations for 10 phrases. Initial
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Figure 6.8: Evolution of the phrase contour trend over 3 generations for the utterance
”Ce mai faci” (”How are you”). Original contour represents the pitch contour produced
by the synthesiser.

standard deviation was 250 and with a population size of 4. Then 10 listeners had to

attribute Mean Opinion Scores (MOS) for the samples in two categories: Naturalness –

the generated samples were compared to original recordings on a scale of [1 - Unnatural]

to [5 - Natural]. All the individuals of the four generations were presented. Expressivity –

the winners of each generation were compared to the correspondent synthesised versions

of them. The listeners had to mark on a scale of [1-Less expressive] to [5-More expressive]

the generated samples in comparison to the synthesiser’s output.

The results of the test are presented in Fig. 6.9. In the naturalness test, all the

generations achieved a relatively high MOS score, with some minor differences for the 4th
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generation. The expressivity test reveals the fact that all the winning samples are more

expressive than the originally synthesised one. The test preliminary conclude the advan-

tages of this method. While maintaining the naturalness of the speech, its expressivity

is enhanced. Examples of the speech samples generated by this method can be found at

http://www.romaniantts.com/nicso2011.
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Figure 6.9: Results of the interactive intonation optimisation listening test. N-Gx repre-
sent the results for the naturalness test of each generation and E-Wx represent the results
for the expressivity test of each generation’s winner. The graph is a box plot, where the
median is represented by a solid bar across a box showing the quartiles and whiskers
extend to 1.5 times the inter-quartile range.
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6.5 Summary

A new method for intonation optimisation of a speech synthesis system based on CMA-ES

and DCT parametrisation of the pitch contour was introduced. The interactive manner of

the optimisation allows the users to select an output which best suits their expectations.

The novelty of the solution consists in using no prosodic annotations of the text, no

deterministic rules and no predefined speaking styles. Also, to the best of the author’s

knowledge, this is one of the first applications of CMA-ES for an interactive problem.

The method uses the output of the Romanian HTS system presented in chapter 4 and

parametrises the output’s F0 contour using the DCT. Evolution strategies are applied to

derive new and enhanced speech samples according to the listener’s choice.

The DCT parametrisation was chosen based on the results of the previous chapter,

which proved that the discrete cosine transform is capable of both modelling and predict-

ing of the F0 contour. The proposed method uses 7 DCT coefficients DCT1 to DCT7.

DCT0 is left aside because it represents the mean of the curve and can be considered

as the fundamental frequency of the speaker. The influence of the mean and standard

deviation of the coefficients over pitch variations is also studied. Using these results, the

initial standard deviation of the population is assigned, in order to concurrently maintain

the naturalness of the speech samples, while expanding the dynamics of the pitch.

Because the method is designed to be used in an interactive optimisation problem,

interactive evolution strategies were selected to provide a fit population of speech samples

and the correct evolution of the samples from one generation to the other. To determine

the optimal population size, user fatigue versus population variation were compared. This

resulted in the use of 4 individuals per generation and their evolution over 3 generations

was studied in order to prove that their pitch contours evolve in a satisfactory manner.

All of the previous results were applied within a listening test, in which expressivity and

naturalness of the individuals of 4 successive populations were evaluated. The listeners

rated the naturalness as above average, and the individuals of higher order generations

were considered to be more expressive than the initial ones.
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Chapter 7

Discussion and Future Work

7.1 Resource Development for a Romanian Paramet-

ric Speech Synthesiser

Resource development in a new language is an important step in creating any new speech

processing system. The analysis of extended corpora can provide more accurate results.

Text resources, as well as speech resources were gradually introduced within chapter 3.

Although the resources cover a wide variety of aspects, they can only be viewed as a

starting point for a more complex and elaborate source of information.

The text resources include a newspaper text corpus, simple letter-to-sound rules, ac-

cent positioning, syllabification and part-of-speech tagging. Text resources were not the

main focus of the research and therefore each have identified problems. The text corpus

contains around 4000 newspaper articles. Although the mass-media language is consid-

ered to be the reference for most of the speakers, it is not necessarily an optimal source for

language studies. Literary works should also be included in such a resource. The phonetic

transcriber written in Festival only included a minimal set of rules, which do not cover

all of the rules described by phoneticians. Although, this can be argued against with the

results of the intelligibility listening test.

A good resource for accent positioning is the DEX, but it is not practical to use an

entire word database in a text processor. Even if Romanian does not have deterministic

accent positioning rules, the majority of the accents could be derived using machine
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learning algorithms. The preliminary evaluation of the syllabification using MOP principle

is only preliminary and its results cannot be taken for granted. A more extensive analysis

in conjunction with the standard syllabification rules for Romanian should be performed.

Part-of-speech tagging was also determined from an external source and cannot be fully

controlled so far.

The developed lexicon includes accent positioning and phonetic transcription. Al-

though, an extended and important resource, it should be modified so as to include more

information, such as syllabification for example.

The speech resources developed in the context of this thesis are potentially one of the

greatest contributions, considering the lack of such resources for Romanian. The design

of the speech corpus makes it easy to use in many types of speech processing applications,

such as automatic speech recognition, speech coding and of course speech synthesis. Its

high-quality and sampling frequency are also an important feature. The inclusion of both

newspaper and fairytale text in the recorded speech makes it more comprehensive. The

entire speech corpus is freely available under the name of Romanian Speech Synthesis

(RSS) database. A possible extension of this resource is naturally the recording of more

speech data.

7.2 A High Sampling Frequency Romanian Paramet-

ric Text-to-Speech Synthesiser based on Markov

Models

As it has been shown in chapter 4, Romanian language lacks proper open source syn-

thesis systems for research. The HMM-based synthesis system along with the developed

resources is an important addition to the research domain. Chapter 4 included the data

preparation steps from text processing to speech segmentation and annotation. A first

problem of the TTS system is the lack of an optimal text processor, with full text normal-

isation and POS tagging. Although it has not been proven, correct POS tagging could

influence the result of the synthesiser.

The results of the listening test showed that the speech resources, configuration param-
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eters and sampling frequency were appropriately selected. The evaluation of the system

also included the evaluation of the amount of training data. It is commonly known that

for speech synthesis, the larger the speech corpus the better the results are. However, an

interesting development would be the selection of a minimum duration speech corpus with

results comparable to the ones achieved herein. The listening test also showed that for

Romanian, general-purpose designed semantically unpredictable sentences cannot deter-

mine significant differences between systems. Thus, a more complex method of evaluating

Romanian intelligibility should be designed.

7.3 A Language-Independent Intonation Modelling

Technique

Chapter 5 was an evaluation of the parametrisation and prediction capabilities of the

DCT transform for F0 contours. The proposed method makes a clear separation between

the syllable and phrase levels of the fundamental frequency for F0 parametrisation. Each

layer is individually modelled using a limited number of DCT coefficients. The statistical

analysis of the DCT coefficients showed that as the order of the coefficient increases, the

relative standard deviation decreases, which means less variability. It can therefore be

concluded that by extending the number of DCT coefficients, no further major improve-

ment can be achieved.

Each of the DCT coefficients is predicted separately using CART algorithms. The

features used for the training vector are the ones available in the HTS label format, and

thus no additional processing is required. CART algorithms are fast and efficient methods

of estimation for low-complexity problems. As the results showed, their performance

for high order coefficients is drastically reduced. This means that the analysis of some

more advanced machine learning methods, such as neural networks or Markov models is

needed. Also because of the separate estimation of the coefficients, some joint features

can be overlooked. A joint estimation mechanism would probably enhance the prediction

results.

The attribute selection provided the means for a complexity reduction of the prob-

lem, but it did not provide accurate correspondence between the DCT coefficients and
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the phonological features used in the feature vector. A more elaborate analysis of this

correspondence should also be performed.

7.4 Optimising the F0 Contour with Interactive Non-

Expert Feedback

Language-independent F0 contour optimisation is a very important aspect of the speech

synthesis domain. The method and prototype system presented in chapter 6 can be

easily adapted to any HMM-based synthesiser with minimum adjustment. Preliminary

evaluations carried out proposed the setup parameters of such a system and have shown

that the dynamic pitch expansion can be achieved even with a small number of individuals

and generations.

As the results obtained in this preliminary research have achieved a high-level of

intonational variation and user satisfaction, a web-based application of the interactive

optimisation is under-way. The application would allow the user to select the entire

utterance or just parts of it – i.e., phrases, words or even syllables – for the optimisation

process to enhance. For a full prosodic optimisation, the duration of the utterance should

be included in the interactive application as well.

One drawback to the solution is the lack of individual manipulation of each of the 7

DCT coefficients in the genome, unattainable in the context of the evolutionary algorithm

chosen. However the coefficients’ statistics showed that the average standard deviation

is similar and thus the choice for the initial standard deviation does not alter the higher

order coefficients.

An interesting development would be a user-adaptive speech synthesiser. Based on

previous optimisation choices, the system could adapt in time to a certain prosodic real-

isation. Having set up the entire workflow, testing different types of fitness functions is

also of great interest.
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Thesis contributions

The main contributions of the thesis are organised in chapters 3,4,5 and 6 and can be

summarised as follows, along with their chapter correspondence and published papers:

1. A 65,000 Romanian word lexicon with phonetic transcription and accent

positioning

In chapter: 3

Published Papers: [Stan et al., 2011c], [Stan and Giurgiu, 2010], [Stan, 2010]

Phonetic transcription and accent positioning represent two key aspects of a text pro-

cessing module for text-to-speech synthesis. The 65,000 word lexicon represents 4.7% of

the total entries of the DEX online database. The phonetic transcription was performed

using the standard phoneme set for Romanian, excluding allophones and rare case ex-

ception pronunciations. Simple initial letter-to-sound rules were written in Festival, and

some other rules were added manually in the lexicon. Accent positioning was directly

extracted from the DEX online database.

The lexicon is an important linguistic resource mainly because of its dimension and

contents. To the best of the author’s knowledge there are no available resources of this

type. The correctness of the information within was tested through the use of the lexicon

in the front-end training of the Romanian speech synthesiser.

This contribution is supported by the development of the following additional re-

sources:

• A text corpus of 4506 short newspaper articles trawled between August 2009 and

September 2009 from the online newspaper ”Adevărul”. It contains over 1,700,000

words, and the top 65,000 most frequent were used in the lexicon;
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• A reduced set of Romanian letter-to-sound rules written in Festival format for the

initial phonetic transcription of the lexicon;

2. The Romanian Speech Synthesis (RSS) corpus: A high-quality broad

application Romanian speech resource

In chapter: 3

Published Papers: [Stan et al., 2011c], [Stan and Giurgiu, 2010], [Stan, 2010]

Starting from the requirements of a parametric HMM-based speech synthesiser, the

development of an extended speech corpus was identified. The Romanian Speech Synthesis

corpus has a duration of 4 hours and comprises the following data:

• Training set utterances - approx. 3.5 hours

– 1493 random newspaper utterances

– 983 diphone coverage utterances

– 704 fairytale utterances - the short stories Povestea lui Stan Păţitul and Ivan

Turbincă by Ion Creangă

• Testing set utterances - approx. 0.5 hours

– 210 random newspaper utterances

– 110 random fairytale utterances

– 216 semantically unpredictable sentences

The recordings were performed at 96kHz, 24 bits per sample and downsampled at

48kHz using professional recording equipment. The entire corpus, along with ortographic

and phonetic transcription, time-aligned HTS labels, and accent positioning are freely

available at www.romaniantts.com, and represent the most extended Romanian speech

corpus.

The corpus was tested through its use in the model training part of the Romanian

HMM-based speech synthesiser and also in a simple unit selection concatenative system.

The semantically unpredictable sentences were evaluated as part of the intelligibility sec-

tion of the listening test. The fairytale utterances have been used for the adaptation of

the baseline trained models, in order to achieve a more dynamic intonation of the output
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speech. Statistic analysis of the recorded text within the speech corpus show similarities

to the statistical distributions of the Romanian language.

This contribution is supported by the development of the following additional re-

sources:

• The development of a list of 216 Romanian semantically unpredictable sentences

used in speech synthesis evaluation. To the best of the author’s knowledge, this is

the first resource of this sort;

• A basic Romanian text processor for the HTS format labeling of the speech corpus.

3. An evaluation of the configuration parameters for the HTS system

In chapter: 4

Published Papers: [Stan et al., 2011c], [Stan, 2010]

HMM-based statistical parametric speech synthesis has become one of the mainstream

methods for speech synthesis. The HTS framework offers a large number of possibilities

for the parameter tunning of the generic system. The evaluation of the configuration pa-

rameters included the frequency warping scale, spectral analysis method, cepstral order,

sampling frequency and amount of training data. The first three were heuristically de-

termined based on analysis-by-synthesis methods, while the last two are evaluated within

the listening test for the Romanian HTS synthesiser.

The results showed that:

• there are no significant perceptual differences between the Bark and ERB frequency

scales when using the vocoder for 48kHz input data;

• the data driven generalised logF0 was validated;

• the MGC performed better than the mel-cepstrum analysis method;

• the cepstral analysis order is dependent on the sampling frequency;

• the use of high-sampling frequency increases the quality of the output speech, but

the differences between 32kHz and 48kHz are not significant;

• an increased dimension of the training speech corpus enhances the quality of the

synthetic speech.
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4. A Romanian HMM-based speech synthesiser

In chapter: 4

Published Papers: [Stan et al., 2011c], [Stan, 2010]

The developed TTS system uses HMM-based statistical parametric speech synthesis,

which is the latest technology available for speech synthesis. Employing the text and

speech resources developed priorly, and the established configuration parameters, a num-

ber of 5 distinct systems were trained. They differ by the amount and sampling frequency

of the training data.

The systems have been evaluated by 54 listeners, in a Blizzard-style listening test

comprising 3 sections: naturalness, speaker similarity and intelligibility and along with a

minimal unit selection concatenative system and the original recordings. The results of

the listening test showed an average 3.0 MOS score for all of the HTS systems built, and

an average of 3.3 MOS score for the best evaluated one. Sampling frequency has influenced

the speaker similarity, but not the naturalness, while the amount of the training data had

an effect on both sections. The WER in the intelligibility section, for all the systems was

below 10%.

All of the HTS systems outperformed the unit selection system. Additionally, they

have the capability to adapt to a more dynamic intonation speech corpus, as proved by

the adaptation to the fairytale speech subset.

An interactive demonstration of the Romanian HTS synthesiser is available at www.

romaniantts.com.

This contribution is also supported by the following additional elements:

• A set of 179 Romanian phonetic decision tree questions for context clustering in the

HTS system;

• A basic text processing tool using the Cereproc Development Framework with min-

imal text normalisation and which outputs HTS format labels;
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5. A language-independent F0 modelling technique based on the discrete

cosine transform

In chapter: 5

Published Papers: [Stan and Giurgiu, 2011], [Stan, 2011a]

This contribution solves the F0 modelling, as a part of the language-independence

issue for text-to-speech systems. The method adheres to the superpositional principle

of pitch by modelling the syllable and phrase level contours, and uses a discrete cosine

transform parametrisation. Only the textual features available in the HTS labels, without

any additional linguistic information, and the DCT coefficients of the F0 contour are used

for pitch modelling and prediction.

F0 prediction was performed using independently trained classification and regression

trees for each of the DCT coefficients. The results revealed an average error of 15Hz per

utterance, which is similar to other modelling techniques. Also, the listening test showed

that the users did not consider the differences between the HTS generated F0 contour,

and the DCT predicted one as perceivable.

This contribution is supported by the following additional analysis:

• Statistic evaluation of the of the DCT coefficients within the rnd1 subset of the

RSS database;

• Evaluation of the DCT coefficient prediction results using 3 CART algorithms: M5

rules, Linear Regression and Additive Regression;

• Objective and subjective evaluation of the F0 contour estimation from the tree-based

prediction of the DCT coefficients.

6. A method for the application of interactive CMA-ES in intonation op-

timisation for speech synthesis

In chapter: 6

Published Papers: [Stan et al., 2011a], [Stan, 2011b]

The interactive intonation optimisation method solves a complex problem related to

the expressivity enhancement of the synthesised speech, according to a non-expert lis-

tener’s subjectivity. The originality of the method consists in using no prosodic annota-

127



Thesis Contributions

tions of the text, no deterministic rules and no predefined speaking styles. CMA-ES is

applied in an interactive manner to the DCT coefficients of the phrase level F0 contour

generated by the Romanian HTS system.

The main parameters of the interactive CMA-ES are evaluated and include:

• initial standard deviation of the population used to control the naturalness of the

speech output, by limiting the domain of the F0 values;

• population size used to minimise user fatigue while maintaining a sufficient number

of different speech samples the user can opt for;

• dynamic expansion of pitch over a number of generations to determine the evolution

of the pitch contour according to the user’s choices.

These parameters are also evaluated in the interactive intonation optimisation proto-

type system. To the best of the author’s knowledge, this is also the first application of an

interactive CMA-ES algorithm.

7. A prototype interactive intonation optimisation system using CMA-ES

and DCT parametrisation

In chapter: 6

Published Papers: [Stan et al., 2011a], [Stan, 2011b]

The proposed interactive intonation optimisation method has been implemented in a

prototype system. The system is language-independent and uses the developed Romanian

HTS system and the interactive CMA-ES parameters determined before. Given the out-

put of the baseline speech synthesiser, the user can opt for further enhancements of the

intonation for the synthesised speech. Four new different speech samples derived from the

original F0 contour are presented to the listener in a tournament like comparison method.

Starting from the overall winner of one generation, the next 4 individuals are generated.

The results of the prototype system have been evaluated in a listening test comprising

naturalness and expressivity sections. The individuals naturalness was evaluated with an

average MOS score of 3.1, and all of the newly generated speech samples were considered

to be more expressive than the original one. Thus proving that the prototype system is

able to maintain a natural output speech, while enhancing its expressivity.
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The contributions can be included in the general processing scheme of an HMM-based

speech synthesis system according to Fig. 7.1 and their interdependency as in Fig. 7.2.

TEXT INPUT

SPEECH OUTPUT

Text processing

Parameter 
estimation and 
generation

Synthetic speech 
enhancements

HMM 
models

Speech synthesis

65,000 word 
lexicon

RSS 
corpus

HTS parameter 
configuration

TEXT‐TO‐SPEECH SYSTEM

Romanian HTS 
system

ENHANCED SPEECH OUTPUT

1

23

4

Interactive intonation 
optimisation5 6 7

Figure 7.1: The application of the thesis contributions within the general processing
scheme of an HMM-based speech synthesis system (marked with numbers from 1 to 7).
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configuration3

Romanian HTS 
system4
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using DCT5 Method for interactive 
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Interactive intonation 
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Figure 7.2: The interdependency of the thesis contributions
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Appendix A

List of the Phonemes Used in the
Speech Synthesiser

Phoneme Sample word SAMPA notation

a m-a-ria a
@ cas-ă- @
a@ m-â-nă /-̂ı-nceput 1
b a-b-ac b
k a-c-t k
ch a-ch-eea tS
d -d -acă d
e d-e-spre e

e@ c-e-as e X
f -f -apt f
g a-g-onie g
dz -g-eam dZ
h -h-artă h
i in-i -mă i
j -i -epure j
ij câin-i i 0
zh a-j -utor Z
l a-l -ta l
m a-m-ară m
n ı̂-n-să n
o m-o-tor o

o@ -o-aie o X
p a-p-ă p
r a-r -tă r
s a-s-ta s
sh -ş-i S
t ta-t-a t
ts -ţ-ară ts
u m-u-nca u
w plo-u-at w
v -v -ara v
z a-z -i z
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Appendix B

Letter-to-Sound Rules Written in
Festival

(lts.ruleset
romanian
;;
;;;;;;;;;Sets used;;;;;;;;;;;;;;;;
(
;; For the pronunciation of ”ce”, ”ci”, ”ge”, ”gi”, ”che”, ”chi”, ”ghe”, ”ghi”.
( CV a ă â o u b c d f g j k l m n p r s şt ţu v z )
;; Consonants
( C1 b c d f g j k l m n p r s ş t ţ u v z )
;;Vowels
( V1 a ă â e i ı̂ o u )
;;B followed by t k ţ f s ş h
( SUR t k ţ f s ş h )
);;end sets
;;
;;;;;;;;;;;;Rules;;;;;;;;;;;;;;;;;;
(
( [ ă ] = @ )
;;”X” followed by consonant, preceeded by ”e”
( e [ x ] C1 = k s );;extemporal
;;”X” followed by vowel, preceeded by ”e”
( e [ x ] V1 = g z );; examen
;;”X” preceeded by ”a”, ”o”
( a [ x ] = k s );;axat, oxida
;; Pronunciation of ı̂, Î is the same as for â,
( [ ı̂ ] = a@ )
;;Groups: ”ce”, ”ci”, ”ge”, ”gi”, ”che”, ”chi”, ”ghe”, ”ghi”
( [ c ] CV = k )
( [ c ] e = ch )
( [ c ] i = ch )
( [ c h ] i CV = k )
( [ c h ] e CV = k )
( [ g ] CV = g )
( [ g ] e = dz )
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Chapter B. Letter-to-Sound Rules Written in Festival

( [ g ] i = dz )
( [ g h ] i CV = g )
( [ g h ] e CV = g )
;;”b” followed by SUR = p:
( [ b ] SUR = p );;”subtil”<=>”suptil”
;;Total asimilation: subpământean<=>supământean
( [ b p ] = p )
;;”E” in initial position - some cases: pronouns eu, ea, el, ei, ele and some forms of the verb

”to be” = ”a fi”
( # [ e r a u ] # = j e r a w );;erau->ierau
( # [ e s t e ] # = j e s t e );;este->ieste
( # [ e r a ţ i ] # = j e r a ts ij );;
( # [ e r a m ] # = j e r a m )
( # [ e ] # = j e )
( # [ e ş t i ] # = j e sh t ij )
( # [ e r a ] # = j e r a )
( # [ e r a i ] # = j e r a j )
( # [ e u ] # = j e w )
( # [ e a ] # = j a )
( # [ e i ] # = j e j )
( # [ e l ] # = j e l )
( # [ e l e ] # = j e l e )
;;Diphtongs - falling
( [ a i ] = a j );;rai
( [ a u ] = a w );;sau
( [ e i ] = e j );;trei
( [ e u ] = e w );;greu
( [ i i ] = i j );;mii
( [ i u ] = i w );;scriu
( [ o i ] = o j );;noi
( [ o u ] = o w );;bou
( [ u i ] = u j );;pui
( [ ă i ] = @ j );;răi
( [ ă u ] = @ w );;dulău
( [ â i ] = a@ j );;câine
( [ â u ] = a@ w );;râu
( [ u u ] = u w );;continuu
;;Diphtongs - rising
( [ e a ] = e@ a );;beată
( [ e o ] = e@ o );;Gheorghe
( [ i a ] = j a );;biata
( [ i e ] = j e );;fier
( [ i o ] = j o );;iod
( [ i u ] = j u );;iubit
( [ o a ] = o@ a );;găoace
( [ u e ] = w e );;piuez
( [ u a ] = w a );;băcăuan
( [ u ă ] = w @ );;două
( [ u â ] = w a@ );;plouând
;;Triphtongs
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( [ e a i ] = e@ a j ) ;;ceainic
( [ e a u ] = e@ a w );;beau
( [ i a i ] = j a j ) ;;mi-ai
( [ i a u ] = j a w ) ;;suiau
( [ i e i ] = j e j ) ;;piei
( [ i e u ] = j e w ) ;;maieu
( [ i o i ] = j o j ) ;;picioică
( [ i o u ] = j o w ) ;;maiou
( [ o a i ] = o@ a j ) ;;leoaică
( [ u a i ] = w a j ) ;;nşeuai
( [ u a u ] = w a w ) ;;nşeuau
( [ u ă i ] = w @ j ) ;;rouăı
( [ e o a ] = e@ o@ a ) ;;pleoape
( [ i o a ] = j o@ a ) ;;creioane
;; Final position for ”i” not a diphtong
( C1 [ i ] # = ij ) ;;câini
;;Vowels
( [ a ] = a )
( [ e ] = e )
( [ i ] = i )
( [ i ] = ij )
( [ i ] = j )
( [ o ] = o )
( [ o ] = o@ )
( [ u ] = u )
( [ u ] = w )
( [ ă ] = @ )
( [ Ă ] = @ )
( [ â ] = a@ )
( [ Â ] = a@ )
( [ ı̂ ] = a@ )
( [ Î ] = a@ )
;;Consonants
( [ c ] = k )
( [ b ] = b )
( [ d ] = d )
( [ f ] = f )
( [ g ] = g )
( [ h ] = h )
( [ j ] = zh )
( [ k ] = k )
( [ l ] = l )
( [ m ] = m )
( [ n ] = n )
( [ p ] = p )
( [ q ] = k )
( [ r ] = r )
( [ s ] = s )
( [ ş ] = sh )
( [ Ş ] = sh )
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( [ t ] = t )
( [ ţ ] = ts )
( [ Ţ ] = ts )
( [ v ] = v )
( [ w ] = u )
( [ x ] = k s )
( [ y ] = i )
( [ z ] = z )
( # [ c ] # = ch e )
( # [ d ] # = d e )
( # [ f ] # = e f )
( # [ b ] # = b e )
( # [ g ] # = dz e )
( # [ h ] # = h a sh ij )
( # [ j ] # = zh a@ )
( # [ k ] # = k a )
( # [ l ] # = e l )
( # [ m ] # = e m )
( # [ n ] # = e n )
( # [ p ] # = p e )
( # [ q ] # = k i w )
( # [ r ] # = e r )
( # [ s ] # = e s )
( # [ t ] # = t e )
( # [ v ] # = v e )
( # [ x ] # = i c s )
( # [ y ] # = i g r e k )
( # [ z ] # = z e t )
( # [ ş ] # = sh a@ )
( # [ ţ ] # = ts a@ )
))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
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Appendix C

Sample Entries of the 65,000 Word
Lexicon

An extract from the lexicon. The list of phonemes is presented in Appendix A, and 0 and 1
represent the accent 1. Only one accent can exist within a word.
a a1
ă @1
â a@1
aa a1 a0
ab a1 b
aba a0 b a1
abajururile a0 b a0 zh u1 r u0 r i0 l e0
abandon a0 b a0 n d o1 n
abandona a0 b a0 n d o0 n a1
abandonând a0 b a0 n d o0 n a@1 n d
abandonarea a0 b a0 n d o0 n a1 r e@0 a0
abandonării a0 b a0 n d o0 n @1 r i0 j0
abandonat a0 b a0 n d o0 n a1 t
abandonată a0 b a0 n d o0 n a1 t @0
abandonate a0 b a0 n d o0 n a1 t e0
abandonaţi a0 b a0 n d o0 n a1 ts ij0
abandonează a0 b a0 n d o0 n e@0 a1 z @0
abandoneze a0 b a0 n d o0 n e1 z e0
abandonul a0 b a0 n d o1 n u0 l
abandonului a0 b a0 n d o1 n u0 l u0 j0
abat a0 b a1 t
abată a0 b a1 t @0
abate a0 b a1 t e0
abatere a0 b a1 t e0 r e0
abaterea a0 b a1 t e0 r e@0 a0
abateri a0 b a1 t e0 r ij0
abaterile a0 b a1 t e0 r i0 l e0
abator a0 b a0 t o1 r

10-no accent, 1-accent

153
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abatorul a0 b a0 t o1 r u0 l
abatorului a0 b a0 t o1 r u0 l u0 j0
abătut a0 b @0 t u1 t
abdică a0 b d i0 k @1
abdice a0 b d i1 ch e0
abdomen a0 b d o0 m e1 n
abdomenul a0 b d o0 m e1 n u0 l
abdomenului a0 b d o0 m e1 n u0 l u0 j0
abdominală a0 b d o0 m i0 n a1 l @0
abdominale a0 b d o0 m i0 n a1 l e0
abecedar a0 b e0 ch e0 d a1 r
abecedarul a0 b e0 ch e0 d a1 r u0 l
abecedarului a0 b e0 ch e0 d a1 r u0 l u0 j0
aberant a0 b e0 r a1 n t
aberantă a0 b e0 r a1 n t @0
aberante a0 b e0 r a1 n t e0
aberaţie a0 b e0 r a1 ts i0 e0
aberaţii a0 b e0 r a1 ts i0 j0
abia a0 b j0 a1
abil a0 b i1 l
abilitare a0 b i0 l i0 t a1 r e0
abilitarea a0 b i0 l i0 t a1 r e@0 a0
abilitat a0 b i0 l i0 t a1 t
abilitate a0 b i0 l i0 t a1 t e0
abilitatea a0 b i0 l i0 t a1 t e@0 a0
abilitaţi a0 b i0 l i0 t a1 ts ij0
abilităţi a0 b i0 l i0 t @1 ts ij0
abilităţile a0 b i0 l i0 t @1 ts i0 l e0
abilităţilor a0 b i0 l i0 t @1 ts i0 l o0 r
abilitau a0 b i0 l i0 t a1 w0
abilitează a0 b i0 l i0 t e@0 a1 z @0
abisului a0 b i1 s u0 l u0 j0
abitir a0 b i0 t i1 r
abject a0 b zh e1 k t
abolirea a0 b o0 l i1 r e@0 a0
abolit a0 b o0 l i1 t
abolite a0 b o0 l i1 t e0
abona a0 b o0 n a1
abonament a0 b o0 n a0 m e1 n t
abonamente a0 b o0 n a0 m e1 n t e0
abonamentele a0 b o0 n a0 m e1 n t e0 l e0
abonamentelor a0 b o0 n a0 m e1 n t e0 l o0 r
abonamentul a0 b o0 n a0 m e1 n t u0 l
abonamentului a0 b o0 n a0 m e1 n t u0 l u0 j0
abonat a0 b o0 n a1 t
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abonată a0 b o0 n a1 t @0
abonaţi a0 b o0 n a1 ts ij0
abonatul a0 b o0 n a1 t u0 l
aborda a0 b o0 r d a1
abordăm a0 b o0 r d @1 m
abordare a0 b o0 r d a1 r e0
abordare a0 b o0 r d a1 r e0
abordarea a0 b o0 r d a1 r e@0 a0
abordări a0 b o0 r d @1 r ij0
abordării a0 b o0 r d @1 r i0 j0
abordările a0 b o0 r d @1 r i0 l e0
abordasem a0 b o0 r d a1 s e0 m
abordat a0 b o0 r d a1 t
abordată a0 b o0 r d a1 t @0
abordate a0 b o0 r d a1 t e0
abordaţi a0 b o0 r d a1 ts ij0
abordează a0 b o0 r d e@0 a1 z @0
abordeze a0 b o0 r d e1 z e0
abordezi a0 b o0 r d e1 z ij0
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Appendix D

HTS Labels Format

p1˜p2-p3+p4=p5:p6 p7

/A/a1 a2 a3

/B/b1 - b2 - b3 : b4 - b5 & b6 - b7 # b8 - b9 $ b10 - b11 > b12 - b13 < b14 - b15 — b16

/C/c1+c2+c3

/D/d1 d2

/E/e1+e2:e3+e4&e5+e6#e7+e8

/F/f1 f2

/G/g1 g2

/H/h1=h2:h3=h4&h5

/I/i1 i2
/J/j1+j2-j3

p1 the phoneme identity before the previous phoneme
p2 the previous phoneme identity
p3 the current phoneme identity
p4 the next phoneme identity
p5 the phoneme identity after the next phoneme
p6 position of the current phoneme identity in the current syllable (forward)
p7 position of the current phoneme identity in the current syllable (backward)

a1 whether the previous syllable is stressed or not (0:not stressed, 1:stressed)
a2 whether the previous syllable is accented or not (0:not accented, 1:accented)
a3 the number of phonemes in the previous syllable

b1 whether the current syllable is stressed or not (0:not stressed, 1:stressed)
b2 whether the current syllable is accented or not (0:not accented, 1:accented)
b3 the number of phonemes in current syllable
b4 position of the current syllable in the current word (forward)
b5 position of the current syllable in the current word (backward)
b6 position of the current syllable in the current phrase (forward)
b7 position of the current syllable in the current phrase (backward)
b8 the number of stressed syllables before the current syllable in the current phrase
b9 the number of stressed syllables after the current syllable in the current phrase
b10 the number of accented syllables before the current syllable in the current phrase
b11 the number of accented syllables after the current syllable in the current phrase
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b12 the number of syllables from the previous stressed syllable to the current syllable
b13 the number of syllables from the current syllable to the next stressed syllable
b14 the number of syllables from the previous accented syllable to the current syllable
b15 the number of syllables from the current syllable to the next accented syllable
b16 name of the vowel of the current syllable

c1 whether the next syllable is stressed or not (0:not stressed, 1:stressed
c2 whether the next syllable is accented or not (0:not accented, 1:accented)
c3 the number of phonemes in the next syllable

d1 part-of-speech of the previous word
d2 the number of syllables in the previous word

e1 part-of-speech of the current word
e2 the number of syllables in the current word
e3 position of the current word in the current phrase (forward)
e4 position of the current word in the current phrase (backward)
e5 the number of content words before the current word in the current phrase
e6 the number of content words after the current word in the current phrase
e7 the number of words from the previous content word to the current word
e8 the number of words from the current word to the next content word

f1 part-of-speech of the next word
f2 the number of syllables in the next word

g1 the number of syllables in the previous phrase
g2 the number of words in the previous phrase

h1 the number of syllables in the current phrase
h2 the number of words in the current phrase
h3 position of the current phrase in the utterance (forward)
h4 position of the current phrase in the utterance (backward)
h5 TOBI endtone of the current phrase

i1 the number of syllables in the next phrase
i2 the number of words in the next phrase

j1 the number of syllables in this utterance
j2 the number of words in this utterance
j3 the number of phrases in this utterance

Additionaly in the training labels, the temporal markers are added at the beginning of each
line.

Sample line from a training label:

2700000 3650000 d˜e-a+s=e:1 1
/A/1 1 2
/B/0-0-1:1-4& 2-4#1-1$ 1-1 > 0-0 < 0-0—a
/C/1+1+2
/D/content 1
/E/feature+4:2+1&1+0#0+0
/F/content 3
/G/0 0
/H/5=2:1=2&L-L%
/I/18 9
/J/22+11-2
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HTS Label File Example

xx˜xx-#+u=n:xx xx/A/0 0 0/B/xx-xx-xx:xx-xx&xx-xx#xx-xx$xx-xx>xx-xx<xx-xx—xx/
C/0+0+2/D/feature 0/E/xx+xx:xx+xx&xx+xx#xx+xx/F/content 3/G/0 0/H/xx=xx:1
=4&L-L%/I/1 1/J/23+15-4
xx˜#-u+n=m:2 1/A/0 0 0/B/1-1-2:1-1&1-12#0-5$0-5>0-2<0-2—u/C/0+0+2/D/feature 0
/E/feature+1:1+6&0+4#0+0/F/content 3/G/0 0/H/12=6:1=4&L-L%/I/1 1/J/23+15-4
# ˜u-n+m=i:3 0/A/0 0 0/B/1-1-2:1-1&1-12#0-5$0-5>0-2<0-2—u/C/0+0+2/D/feature 0
/E/feature+1:1+6&0+4#0+0/F/content 3/G/0 0/H/12=6:1=4&L-L%/I/1 1/J/23+15-4
u˜n-m+i=l:1 2/A/1 1 2/B/0-0-2:1-3&2-11#1-5$1-5>0-1<0-1—i/C/0+0+2/D/feature 1
/E/content+3:2+5&0+3#1+0/F/content 3/G/0 0/H/12=6:1=4&L-L%/I/1 1/J/23+15-4
n˜m-i+l=i:2 1/A/1 1 2/B/0-0-2:1-3&2-11#1-5$1-5>0-1<0-1—i/C/0+0+2/D/feature 1
/E/content+3:2+5&0+3#1+0/F/content 3/G/0 0/H/12=6:1=4&L-L%/I/1 1/J/23+15-4
m˜i-l+i=t:1 2/A/0 0 2/B/0-0-2:2-2&3-10#1-5$1-5>1-0<1-0—i/C/1+1+3/D/feature 1
/E/content+3:2+5&0+3#1+0/F/content 3/G/0 0/H/12=6:1=4&L-L%/I/1 1/J/23+15-4
i˜l-i+t=a:2 1/A/0 0 2/B/0-0-2:2-2&3-10#1-5$1-5>1-0<1-0—i/C/1+1+3/D/feature 1
/E/content+3:2+5&0+3#1+0/F/content 3/G/0 0/H/12=6:1=4&L-L%/I/1 1/J/23+15-4
l˜i-t+a=r:1 3/A/0 0 2/B/1-1-3:3-1&4-9#1-4$1-4>2-1<2-1—a/C/0+0+2/D/feature 1
/E/content+3:2+5&0+3#1+0/F/content 3/G/0 0/H/12=6:1=4&L-L%/I/1 1/J/23+15-4
i˜t-a+r=r:2 2/A/0 0 2/B/1-1-3:3-1&4-9#1-4$1-4>2-1<2-1—a/C/0+0+2/D/feature 1
/E/content+3:2+5&0+3#1+0/F/content 3/G/0 0/H/12=6:1=4&L-L%/I/1 1/J/23+15-4
t˜a-r+r=o:3 1/A/0 0 2/B/1-1-3:3-1&4-9#1-4$1-4>2-1<2-1—a/C/0+0+2/D/feature 1
/E/content+3:2+5&0+3#1+0/F/content 3/G/0 0/H/12=6:1=4&L-L%/I/1 1/J/23+15-4
a˜r-r+o=m:1 2/A/1 1 3/B/0-0-2:1-3&5-8#2-4$2-4>0-0<0-0—o/C/1+1+2/D/content 3
/E/content+3:3+4&1+2#0+1/F/feature 1/G/0 0/H/12=6:1=4&L-L%/I/1 1/J/23+15-4
r˜r-o+m=a@:2 1/A/1 1 3/B/0-0-2:1-3&5-8#2-4$2-4>0-0<0-0—o/C/1+1+2/D/content 3
/E/content+3:3+4&1+2#0+1/F/feature 1/G/0 0/H/12=6:1=4&L-L%/I/1 1/J/23+15-4
r˜o-m+a@=n:1 2/A/0 0 2/B/1-1-2:2-2&6-7#2-3$2-3>1-1<1-1—a@/C/0+0+1/D/content 3
/E/content+3:3+4&1+2#0+1/F/feature 1/G/0 0/H/12=6:1=4&L-L%/I/1 1/J/23+15-4
o˜m-a@+n=a:2 1/A/0 0 2/B/1-1-2:2-2&6-7#2-3$2-3>1-1<1-1—a@/C/0+0+1/D/content 3
/E/content+3:3+4&1+2#0+1/F/feature 1/G/0 0/H/12=6:1=4&L-L%/I/1 1/J/23+15-4
m˜a@-n+a=f:1 1/A/1 1 2/B/0-0-1:3-1&7-6#3-3$3-3>0-0<0-0—no vowels/C/1+1+1
/D/content 3/E/content+3:3+4&1+2#0+1/F/feature 1/G/0 0/H/12=6:1=4&L-L%/I/1 1
/J/23+15-4
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a@˜n-a+f=o:1 1/A/0 0 1/B/1-1-1:1-1&8-5#3-2$3-2>1-0<1-0—a/C/1+1+3/D/content 3
/E/feature+1:4+3&2+2#0+0/F/content 2/G/0 0/H/12=6:1=4&L-L%/I/1 1/J/23+15-4
n˜a-f+o=s:1 3/A/1 1 1/B/1-1-3:1-2&9-4#4-1$4-1>0-2<0-2—o/C/0+0+1/D/feature 1
/E/content+2:5+2&2+1#1+0/F/content 2/G/0 0/H/12=6:1=4&L-L%/I/1 1/J/23+15-4
a˜f-o+s=t:2 2/A/1 1 1/B/1-1-3:1-2&9-4#4-1$4-1>0-2<0-2—o/C/0+0+1/D/feature 1
/E/content+2:5+2&2+1#1+0/F/content 2/G/0 0/H/12=6:1=4&L-L%/I/1 1/J/23+15-4
f˜o-s+t=u:3 1/A/1 1 1/B/1-1-3:1-2&9-4#4-1$4-1>0-2<0-2—o/C/0+0+1/D/feature 1
/E/content+2:5+2&2+1#1+0/F/content 2/G/0 0/H/12=6:1=4&L-L%/I/1 1/J/23+15-4
o˜s-t+u=ch:1 1/A/1 1 3/B/0-0-1:2-1&10-3#5-1$5-1>0-1<0-1—no vowels/C/0+0+1
/D/feature 1/E/content+2:5+2&2+1#1+0/F/content 2/G/0 0/H/12=6:1=4&L-L%/I/1 1
/J/23+15-4
s˜t-u+ch=i:1 1/A/0 0 1/B/0-0-1:1-2&11-2#5-1$5-1>1-0<1-0—u/C/1+1+3/D/content 2
/E/content+2:6+1&3+0#0+0/F/feature 1/G/0 0/H/12=6:1=4&L-L%/I/1 1/J/23+15-4
t˜u-ch+i=s:1 3/A/0 0 1/B/1-1-3:2-1&12-1#5-0$5-0>2-0<2-0—i/C/1+1+5/D/content 2
/E/content+2:6+1&3+0#0+0/F/feature 1/G/0 0/H/12=6:1=4&L-L%/I/1 1/J/23+15-4
u˜ch-i+s=pau:2 2/A/0 0 1/B/1-1-3:2-1&12-1#5-0$5-0>2-0<2-0—i/C/1+1+5/D/content 2
/E/content+2:6+1&3+0#0+0/F/feature 1/G/0 0/H/12=6:1=4&L-L%/I/1 1/J/23+15-4
ch˜i-s+pau=m:3 1/A/0 0 1/B/1-1-3:2-1&12-1#5-0$5-0>2-0<2-0—i/C/1+1+5/D/content 2
/E/content+2:6+1&3+0#0+0/F/feature 1/G/0 0/H/12=6:1=4&L-L%/I/1 1/J/23+15-4
i˜s-pau+m=a:xx xx/A/0 0 1/B/xx-xx-xx:xx-xx&xx-xx#xx-xx$xx-xx>xx-xx<xx-xx—xx
/C/1+1+5/D/content 2/E/xx+xx:xx+xx&xx+xx#xx+xx/F/feature 1/G/0 0/H/xx=xx
:1=4&L-L%/I/1 1/J/23+15-4
s˜pau-m+a=r:1 5/A/1 1 3/B/1-1-5:1-1&1-1#0-0$0-0>0-0<0-0—ij/C/1+1+1/D/content 2
/E/feature+1:1+1&0+0#0+0/F/content 2/G/12 6/H/1=1:2=3&L-L%/I/6 2/J/23+15-4
pau˜m-a+r=ts:2 4/A/1 1 3/B/1-1-5:1-1&1-1#0-0$0-0>0-0<0-0—ij/C/1+1+1/D/content 2
/E/feature+1:1+1&0+0#0+0/F/content 2/G/12 6/H/1=1:2=3&L-L%/I/6 2/J/23+15-4
m˜a-r+ts=ij:3 3/A/1 1 3/B/1-1-5:1-1&1-1#0-0$0-0>0-0<0-0—ij/C/1+1+1/D/content 2
/E/feature+1:1+1&0+0#0+0/F/content 2/G/12 6/H/1=1:2=3&L-L%/I/6 2/J/23+15-4
a˜r-ts+ij=pau:4 2/A/1 1 3/B/1-1-5:1-1&1-1#0-0$0-0>0-0<0-0—ij/C/1+1+1/D/content 2
/E/feature+1:1+1&0+0#0+0/F/content 2/G/12 6/H/1=1:2=3&L-L%/I/6 2/J/23+15-4
r˜ts-ij+pau=a@:5 1/A/1 1 3/B/1-1-5:1-1&1-1#0-0$0-0>0-0<0-0—ij/C/1+1+1/D/content 2
/E/feature+1:1+1&0+0#0+0/F/content 2/G/12 6/H/1=1:2=3&L-L%/I/6 2/J/23+15-4
ts˜ij-pau+a@=n:xx xx/A/1 1 3/B/xx-xx-xx:xx-xx&xx-xx#xx-xx$xx-xx>xx-xx<xx-xx—xx
/C/1+1+1/D/content 2/E/xx+xx:xx+xx&xx+xx#xx+xx/F/content 2/G/12 6/H/xx=xx:
2=3&L-L%/I/6 2/J/23+15-4
ij˜pau-a@+n=a:1 1/A/1 1 5/B/1-1-1:1-2&1-6#0-1$0-1>0-3<0-3—a@/C/0+0+1/D/feature 1
/E/content+2:1+2&0+1#0+0/F/content 4/G/1 1/H/6=2:3=2&L-L%/I/11 6/J/23+15-4
pau˜a@-n+a=f:1 1/A/1 1 1/B/0-0-1:2-1&2-5#1-1$1-1>0-2<0-2—no vowels/C/0+0+2
/D/feature 1/E/content+2:1+2&0+1#0+0/F/content 4/G/1 1/H/6=2:3=2&L-L%/I/11 6
/J/23+15-4
a@˜n-a+f=g:1 2/A/0 0 1/B/0-0-2:1-4&3-4#1-1$1-1>1-1<1-1—a/C/0+0+2/D/content 2
/E/content+4:2+1&1+0#0+0/F/feature 2/G/1 1/H/6=2:3=2&L-L%/I/11 6/J/23+15-4
n˜a-f+g=a:2 1/A/0 0 1/B/0-0-2:1-4&3-4#1-1$1-1>1-1<1-1—a/C/0+0+2/D/content 2
/E/content+4:2+1&1+0#0+0/F/feature 2/G/1 1/H/6=2:3=2&L-L%/I/11 6/J/23+15-4
a˜f-g+a=n:1 2/A/0 0 2/B/0-0-2:2-3&4-3#1-1$1-1>2-0<2-0—a/C/1+1+2/D/content 2
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/E/content+4:2+1&1+0#0+0/F/feature 2/G/1 1/H/6=2:3=2&L-L%/I/11 6/J/23+15-4
f˜g-a+n=i:2 1/A/0 0 2/B/0-0-2:2-3&4-3#1-1$1-1>2-0<2-0—a/C/1+1+2
/D/content 2/E/content+4:2+1&1+0#0+0/F/feature 2/G/1 1/H/6=2:3=2&L-L%/I/11 6
/J/23+15-4
g˜a-n+i=s:1 2/A/0 0 2/B/1-1-2:3-2&5-2#1-0$1-0>3-1<3-1—i/C/0+0+4/D/content 2
/E/content+4:2+1&1+0#0+0/F/feature 2/G/1 1/H/6=2:3=2&L-L%/I/11 6/J/23+15-4
a˜n-i+s=t:2 1/A/0 0 2/B/1-1-2:3-2&5-2#1-0$1-0>3-1<3-1—i/C/0+0+4/D/content 2
/E/content+4:2+1&1+0#0+0/F/feature 2/G/1 1/H/6=2:3=2&L-L%/I/11 6/J/23+15-4
n˜i-s+t=a:1 4/A/1 1 2/B/0-0-4:4-1&6-1#2-0$2-0>0-0<0-0—a/C/1+1+2/D/content 2
/E/content+4:2+1&1+0#0+0/F/feature 2/G/1 1/H/6=2:3=2&L-L%/I/11 6/J/23+15-4
i˜s-t+a=n:2 3/A/1 1 2/B/0-0-4:4-1&6-1#2-0$2-0>0-0<0-0—a/C/1+1+2/D/content 2
/E/content+4:2+1&1+0#0+0/F/feature 2/G/1 1/H/6=2:3=2&L-L%/I/11 6/J/23+15-4
s˜t-a+n=pau:3 2/A/1 1 2/B/0-0-4:4-1&6-1#2-0$2-0>0-0<0-0—a/C/1+1+2/D/content 2
/E/content+4:2+1&1+0#0+0/F/feature 2/G/1 1/H/6=2:3=2&L-L%/I/11 6/J/23+15-4
t˜a-n+pau=j:4 1/A/1 1 2/B/0-0-4:4-1&6-1#2-0$2-0>0-0<0-0—a/C/1+1+2/D/content 2
/E/content+4:2+1&1+0#0+0/F/feature 2/G/1 1/H/6=2:3=2&L-L%/I/11 6/J/23+15-4
a˜n-pau+j=a:xx xx/A/1 1 2/B/xx-xx-xx:xx-xx&xx-xx#xx-xx$xx-xx>xx-xx<xx-xx—xx
/C/1+1+2/D/content 2/E/xx+xx:xx+xx&xx+xx#xx+xx/F/feature 2/G/1 1/H/xx=xx:
3=2&L-L%/I/11 6/J/23+15-4
n˜pau-j+a=r:1 2/A/0 0 4/B/1-1-2:1-2&1-11#0-5$0-5>0-1<0-1—a/C/0+0+1/D/content 4
/E/feature+2:1+6&0+4#0+1/F/feature 2/G/6 2/H/11=6:4=1&L-L%/I/0 0/J/23+15-4
pau˜j-a+r=u:2 1/A/0 0 4/B/1-1-2:1-2&1-11#0-5$0-5>0-1<0-1—a/C/0+0+1/D/content 4
/E/feature+2:1+6&0+4#0+1/F/feature 2/G/6 2/H/11=6:4=1&L-L%/I/0 0/J/23+15-4
j˜a-r+u=n:1 1/A/1 1 2/B/0-0-1:2-1&2-10#1-5$1-5>0-0<0-0—no vowels/C/1+1+1
/D/content 4/E/feature+2:1+6&0+4#0+1/F/feature 2/G/6 2/H/11=6:4=1&L-L%/I/0 0
/J/23+15-4
a˜r-u+n=a:1 1/A/0 0 1/B/1-1-1:1-2&3-9#1-4$1-4>1-1<1-1—u/C/0+0+1/D/feature 2
/E/feature+2:2+5&0+4#1+0/F/content 3/G/6 2/H/11=6:4=1&L-L%/I/0 0/J/23+15-4
r˜u-n+a=l:1 1/A/1 1 1/B/0-0-1:2-1&4-8#2-4$2-4>0-0<0-0—no vowels/C/1+1+2
/D/feature 2/E/feature+2:2+5&0+4#1+0/F/content 3/G/6 2/H/11=6:4=1&L-L%/I/0 0
/J/23+15-4
u˜n-a+l=t:1 2/A/0 0 1/B/1-1-2:1-3&5-7#2-3$2-3>1-2<1-2—a/C/0+0+2/D/feature 2
/E/content+3:3+4&0+3#2+0/F/content 1/G/6 2/H/11=6:4=1&L-L%/I/0 0/J/23+15-4
n˜a-l+t=u:2 1/A/0 0 1/B/1-1-2:1-3&5-7#2-3$2-3>1-2<1-2—a/C/0+0+2/D/feature 2
/E/content+3:3+4&0+3#2+0/F/content 1/G/6 2/H/11=6:4=1&L-L%/I/0 0/J/23+15-4
a˜l-t+u=l:1 2/A/1 1 2/B/0-0-2:2-2&6-6#3-3$3-3>0-1<0-1—u/C/0+0+1/D/feature 2
/E/content+3:3+4&0+3#2+0/F/content 1/G/6 2/H/11=6:4=1&L-L%/I/0 0/J/23+15-4
l˜t-u+l=a:2 1/A/1 1 2/B/0-0-2:2-2&6-6#3-3$3-3>0-1<0-1—u/C/0+0+1/D/feature 2
/E/content+3:3+4&0+3#2+0/F/content 1/G/6 2/H/11=6:4=1&L-L%/I/0 0/J/23+15-4
t˜u-l+a=f:1 1/A/0 0 2/B/0-0-1:3-1&7-5#3-3$3-3>1-0<1-0—no vowels/C/1+1+1
/D/feature 2/E/content+3:3+4&0+3#2+0/F/content 1/G/6 2/H/11=6:4=1&L-L%/I/0 0
/J/23+15-4
u˜l-a+f=o:1 1/A/0 0 1/B/1-1-1:1-1&8-4#3-2$3-2>2-0<2-0—a/C/1+1+4/D/content 3
/E/content+1:4+3&1+2#0+0/F/content 1/G/6 2/H/11=6:4=1&L-L%/I/0 0/J/23+15-4
l˜a-f+o=s:1 4/A/1 1 1/B/1-1-4:1-1&9-3#4-1$4-1>0-1<0-1—o/C/0+0+2/D/content 1
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/E/content+1:5+2&2+1#0+0/F/content 2/G/6 2/H/11=6:4=1&L-L%/I/0 0/J/23+15-4
a˜f-o+s=t:2 3/A/1 1 1/B/1-1-4:1-1&9-3#4-1$4-1>0-1<0-1—o/C/0+0+2/D/content 1
/E/content+1:5+2&2+1#0+0/F/content 2/G/6 2/H/11=6:4=1&L-L%/I/0 0/J/23+15-4
f˜o-s+t=r:3 2/A/1 1 1/B/1-1-4:1-1&9-3#4-1$4-1>0-1<0-1—o/C/0+0+2/D/content 1
/E/content+1:5+2&2+1#0+0/F/content 2/G/6 2/H/11=6:4=1&L-L%/I/0 0/J/23+15-4
o˜s-t+r=@:4 1/A/1 1 1/B/1-1-4:1-1&9-3#4-1$4-1>0-1<0-1—o/C/0+0+2/D/content 1
/E/content+1:5+2&2+1#0+0/F/content 2/G/6 2/H/11=6:4=1&L-L%/I/0 0/J/23+15-4
s˜t-r+@=n:1 2/A/1 1 4/B/0-0-2:1-2&10-2#5-1$5-1>0-0<0-0—@/C/1+1+3/D/content 1
/E/content+2:6+1&3+0#0+0/F/feature 0/G/6 2/H/11=6:4=1&L-L%/I/0 0/J/23+15-4
t˜r-@+n=i:2 1/A/1 1 4/B/0-0-2:1-2&10-2#5-1$5-1>0-0<0-0—@/C/1+1+3/D/content 1
/E/content+2:6+1&3+0#0+0/F/feature 0/G/6 2/H/11=6:4=1&L-L%/I/0 0/J/23+15-4
r˜@-n+i=t:1 3/A/0 0 2/B/1-1-3:2-1&11-1#5-0$5-0>1-0<1-0—i/C/0+0+0/D/content 1
/E/content+2:6+1&3+0#0+0/F/feature 0/G/6 2/H/11=6:4=1&L-L%/I/0 0/J/23+15-4
@˜n-i+t=#:2 2/A/0 0 2/B/1-1-3:2-1&11-1#5-0$5-0>1-0<1-0—i/C/0+0+0/D/content 1
/E/content+2:6+1&3+0#0+0/F/feature 0/G/6 2/H/11=6:4=1&L-L%/I/0 0/J/23+15-4
n˜i-t+#=xx:3 1/A/0 0 2/B/1-1-3:2-1&11-1#5-0$5-0>1-0<1-0—i/C/0+0+0/D/content 1
/E/content+2:6+1&3+0#0+0/F/feature 0/G/6 2/H/11=6:4=1&L-L%/I/0 0/J/23+15-4
i˜t-#+xx=xx:xx xx/A/0 0 2/B/xx-xx-xx:xx-xx&xx-xx#xx-xx$xx-xx>xx-xx<xx-xx—xx/
C/0+0+0/D/content 1/E/xx+xx:xx+xx&xx+xx#xx+xx/F/feature 0/G/6 2/H/xx=xx:4=1
&L-L%/I/0 0/J/23+15-4
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Appendix F

Sample List of Diphone Coverage
Utterances

The list of the first 50 utterances in each subset is presented:

F.1 diph1

001. Nu este treaba lor ce constituţie avem.
002. Ea era tot timpul pe minge.
003. Nicoară crede că acest concurs va avea succes.
004. Afganistanul va fi reprezentat la adunarea generală de ministrul de externe, a declarat

un responsabil al misiunii.
005. Evenimentul are ca scop facilitarea schimbului de idei privind viitorul securităţii ener-

getice ı̂n aceste regiuni.
006. La serviciu vin dimineaţa, iar acasă ajung seara.
007. Am intervenit să aplanez conflictul.
008. Dacă lucrurile scapă de sub control.
009. Atenţie eu sunt şeful aici.
010. Domnul Bergodi era bine venit la meci chiar dacă dumnealui nu mai face parte din

staf.
011. În caz contrar se va ajunge la amânarea prezentului.
012. Cum era să ratez meciul cu Rapid din cupa româniei.
013. Sud americanii sunt ı̂nsă mai boemi.
014. Am hotărât să urmez cariera militară.
015. Sunt şi acele tatuaje o minciună.
016. Aici şi-a continuat studiile.
017. La acel restaurant avem asigurată masa.
018. Cei care l-au cunoscut au doar cuvinte de laudă despre fostul patron de la Irish Pub.
019. Nu e vina oamenilor că nu au de lucru.
020. În schimb va construi podul pe cheltuiala lui.
021. De multe ori jucam fotbal cu mingea de tenis.
022. Îmi plac foarte mult căţeii.
023. Aceasta va rămâne ı̂n libertate timp de trei luni pentru tratamente medicale.
024. Pe data de zece octombrie toate depozitele de gaze pe care le are România vor fi pline

ochi.
025. Altfel cred că realităţile nu se vor schimba mult timp pe aici.
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026. Îl vor redescoperi pe Marx.
027. Emisarul Statelor Unite Mark H.
028. Cei mai mulţi sunt zilieri.
029. Tirajul lor este simbolic, ı̂ntre două mii şi trei mii de exemplare zilnic.
030. Suspectul principal va fi reaudiat.
031. Semăn cu mamii şi cu tatii.
032. Gorjenii sunt liniştiţi vor evolua cu Oţelul.
033. Sunt resursele cele mai bogate comparativ cu restul resurselor care există, ceea ce ar

putea ı̂nsemna schimbarea industriei petroliere.
034. În opinia mea aici este cheia.
035. Aceasta nu aduce atingere rezultatului procedurii spun oficialii comisiei europene ı̂n

comunicat.
036. E greu să coordonezi o echipă.
037. Nu va putea fi un meci echilibrat.
038. Sunteţi un cuplu de succes.
039. Un caz realmente impresionant l-am ı̂ntâlnit la Iveşti.
040. Vrem cu orice preţ victoria, a spus portughezul.
041. Peste tot sunt locuri frumoase, femei frumoase.
042. În general se lucrează comenzi.
043. Vorbeşti despre Kovacs antrenorul ungur.
044. Nu ne-am considerat favoriţi danezii, au jucat modest dar numai pentru că noi am

evoluat bine.
045. Cel mic nu dormea toată noaptea.
046. Aici a stat pentru Sfânta Liturghie.
047. Un personaj romantic foarte sensibil.
048. Nu au ce să ne ofere.
049. Traficul din Cluj e deranjant, nu-mi place.
050. Mi se pare extraordinară, a continuat el.

F.2 diph2

001. Volleiball club junior Delfin din Bucureşti organizează selecţie, pentru copii cu vârsta
ı̂ntre şase şi treisprezece ani.

002. Acest lucru ı̂l recunoaşte şi purtătorul de cuvânt al unităţii spitaliceşti, doctor Cristian
Jianu.

003. Puneţi compoziţie ı̂n formă până la jumătate, montaţi ı̂n mijloc două ouă fierte.
004. Se serveşte cu sosul de muştar preparat din muştar diluat ı̂n apă şi oţet, sare piper şi

ulei de măsline.
005. Min şaptezeci şi doi: Bujor ratează şansa de a ı̂nscrie dubla.
006. Fiecare clasă are dulăpioare pentru elevi calculatoare şi televizoare.
007. Am maşină am valoare.
008. A fost prima oară când i-am auzit vocea.
009. În caz contrar gorjenii riscau să nu mai joace duminică ı̂n campionat cu Oţelul.
010. Eugeniu Rădulescu tot aşa este.
011. Astăzi Andrei Pavel ı̂l ı̂ntâlneşte pe uruguayanul Pablo Cuevas.
012. Varianta cu cele mai mici şanse era la congres.
013. În paralel se injectează o substanţă care blochează accesul sangvin ı̂n locul respectiv.
014. Puneam versurile pe muzică afirmă digeiul.
015. Echipa Top Gear va filma si pe litoralul Mării Negre ı̂n Delta Dunării şi ı̂n podişul
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F.2. diph2

Dobrogei.
016. Şi să iei măsuri.
017. Bucureştiul vieţuieşte ı̂ntre gri şi prăfuit.
018. Eu ce fac, dorm pe stradă.
019. Ceauşeasca crispată la faţă a luat scrisoarea.
020. Conducătorul auto Ilie g.
021. Am dosar la Hollywood.
022. Le ştiam deja după paşi.
023. Sau o schiţă.
024. Această cafea este servită ı̂n ceşcuţe foarte mici.
025. Lucrăm cu oameni săraci, iar când percepi o taxă se simt nedreptăţiţi.
026. Dan Cristea Veljovici şaizeci şi opt grozav Verdeş cincizeci şi opt.
027. Gorbaciov lui g.
028. Efectuăm evaluări la milioane chiar bilioane de bliţuri.
029. Pe se ve eindhoven.
030. Vom ı̂nfrunta o echipă solidă.
031. E Algeria condusă de Abdelaziz Bouteflika.
032. O lepră cultivată.
033. Tot ce nu clădeşte strică.
034. Alin ı̂nsă parcă nici nu ı̂i auzea.
035. Mihai i i ge.
036. Când trăiesc şi când mor.
037. Unu Europei pentru amatorii genului.
038. Anul acesta ı̂n urma României au stat naţiuni precum Austria, Germania sau Cehia.
039. Practicaţi zilnic exerciţiile kegel.
040. Solistă va fi pianista franceză Grimaud.
041. Se auzea prin mulţime.
042. Sau hai Kape pasă la Bănel.
043. Şaisprezece ianuarie.
044. În secolul nouăsprezece, patruzeci şi şase, se stabileşte definitiv la Puerto Rico.
045. E calomnie tot ce aşterneţi pe hârtie.
046. Nu poţi iubi ceva mai mult decât omul.
047. Vivu şi Petru Rareş.
048. Oameni insensibili, misogini, nenorociţi.
049. Bărbatul urmează a fi predat autorităţilor belgiene.
050. Şi totuşi o să -l facem.
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Appendix G

Sample List of Random Utterances

The first 50 utterances in each subset are presented:

G.1 rnd1

001. De asemenea, contează şi dacă imobilul este la stradă sau nu.
002. Până ı̂n prezent, proiectul avea susţinerea ambelor partide, care şiau ı̂mpărţit deja

conducerea noilor entităţi.
003. Băimăreanul urăşte lipsa de punctualitate şi făţărnicia.
004. În acest cămin au prioritate studenţii ı̂n ani terminali.
005. Dincolo de efectele economice şi comerciale, greva ne face să avem şi lipsă de ı̂ncredere

ı̂n justiţie.
006. Dacă vecinii nu reclamă, noi nu putem depista spargerile de pereţi ilegale din aparta-

mente.
007. Amploarea nu va fi aceeaşi, dar organizatorii se vor strădui să aducă produse autentic

germane la poalele Tâmpei.
008. Vreau să continuu ı̂n acest domeniu până la sfârşitul vieţii spune cu o mină foarte

serioasă micuţa.
009. Căzăturile sunt la ordinea zilei, am picioarele negre, sunt ca un dalmaţian.
010. Pe de altă parte, conform rezultatelor obţinute.
011. Nu este ı̂nsă la fel de clar cu cât ar creşte consumul şi dependenţa de droguri.
012. Departajarea se face pe probe de cincizeci de metri care trebuiesc parcurse ı̂n zece

secunde.
013. O păstrez ca amintire la loc de cinste, ı̂şi aminteşte informaticianul.
014. Sabău spune că stilul de joc al lăncierilor este acelaşi ca şi pe vremea când juca el ı̂n

Olanda.
015. M-am ı̂nţeles bine cu toată echipa, mi-a plăcut foarte mult spune ea.
016. Dacă ı̂i prindem nu ı̂i exmatriculăm din facultate.
017. Pe lângă câini bătrâni avem şi căţei foarte drăguţi şi inteligenţi.
018. Ion Tirinescu deţine funcţia de şef al poliţiei rutiere hunedoara din anul două mii cinci.
019. Răspunde nu numai de funcţionarea optimă ci şi de asigurarea banilor pentru toate

cheltuielile radioului.
020. I-a plăcut jurnalismul şi pentru a ajunge să fie formator de opinie, a ı̂nceput facultatea

la Piteşti.
021. Sunt unii care au descoperit pe aceste reţele foşti colegi de şcoală.
022. Arădenii sunt din ce ı̂n ce mai speriaţi la gândul că trebuie să circule pe drumul Arad
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Şiria.
023. Pe toate rutele din judeţul Vâlcea se fac, ı̂ncepând de săptămâna aceasta, controale

care vizează activităţile de transport persoane.
024. Capitala şi nord-estul au cunoscut cele mai mari ritmuri de creştere ale sumelor restante.
025. Vechile cabinete erau la o distanţă de o sută cincizeci metri de spital şi nu corespundeau

reglementărilor ministerului sănătăţii.
026. Fără aceste două elemente de bază nu ai cum să lucrezi cu niciun copil.
027. Dorim să atragem finanţarea printrun program transfrontalier cu Republica Moldova.
028. La ora actuală oamenii sunt preocupaţi de a avea şi nu mai sunt preocupaţi de a fi.
029. Românii din străinătate nu există pentru autorităţile române de acolo a oftat mama

bărbatului.
030. De asemenea este organizat şi campionatul naţional de car-audio.
031. Printre taxele cele mai mari le are facultatea de drept.
032. Comitetul de implementare are rolul de a supraveghea ı̂ndeplinirea obligaţiilor ce revin

părţilor la convenţie.
033. Locaţia a fost stabilită de către inspectoratul şcolar Arad la grădiniţa cu program

prelungit, situată ı̂n centrul oraşului.
034. Precizează Gheorghe Crivac, unul dintre prorectorii universităţii Piteşti.
035. Uneori suntem chiar mai bune decât ei.
036. Compania mai are activităţi ı̂n domenii precum imobiliare, tehnologie şi energie.
037. Am fost cu mama şi cu sora mea.
038. Din prima până ı̂n ultima secundă, convorbirea telefonică e o beşteleală de cartier

aplicată cu toată impetuozitatea sărmanului cetăţean.
039. În localitate există şase poliţişti, dintre care unul este ı̂n concediu şi unul are mâna

ruptă.
040. Încă de la prima accesare m-a atras foarte mult.
041. Cât durează până câştigă, nu poate spune.
042. Dacă şi pe data de treizeci septembrie se ı̂ntârzie cu primirea avansului, pe doi octombrie

la ora şapte.
043. Copiii care ţineau ı̂n braţe bărcuţe cu telecomandă au ı̂nconjurat fântâna speranţei,

gata de cursă.
044. În blocul şase, două scări, adică aproximativ treizeci de apartamente, erau terminate

când au venit actele de la primărie.
045. A fost testat alcooltest, rezultatul fiind negativ.
046. Până la urmă rămâi oricum doar cu amintirile plăcute, oboseala trece cu un somn bun.
047. De atunci, am ı̂nvăat foarte multe persoane să danseze pe diferite ritmuri.
048. După ce i-au administrat ı̂ngrijirile de urgenă, medicii l-au dus la reanimare, unde se

află sub supraveghere de specialitate.
049. Viorica Crişan, directorul muzeului, stă zilnic peste program la serviciu.
050. Eşecul statului federal ı̂n faţa cicloanelor rămâne unul din cele mai profunde stigmate

ale preşedinţiei lui George.

G.2 rnd2

001. Ne doare pe toţi, ı̂ncă de a doua zi dimineaţă.
002. Drumul a fost blocat mai multe ore.
003. Acum am fost penalizaţi şi cu penalty.
004. Această partidă se poate compara cu meciul de la Doneţk.
005. Gâtul a necesitat intervenţie de lungă durată.
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G.3. rnd3

006. Îmi dezvoltă o anumită minuţiozitate.
007. Îşi ı̂ncheie comentariul Ria Novosti.
008. Dacă nu s-a intervenit la timp, normal că acum sunt grămezi uriaşe.
009. Pot să spun că mi-a schimbat viaţa.
010. Primul meu antrenor de tenis a fost profesorul Geantă.
011. Apoi au venit foarte multe delegări ı̂n toată ţara.
012. Am avut ı̂nsă doar doi ani deschisă o casă de modă.
013. În două mii unu a obţinut titlul de master series, la Montreal.
014. Aş vrea să se califice amândouă.
015. Staţia de la Penny Market nu va fi funcţională pe durata lucrărilor.
016. El a reuşit să-l imobilizeze pe bărbat.
017. Preţul unei ore de joacă sub supravegherea personalului angajat costă şapte lei.
018. Suntem prieteni cu skaterii.
019. De altfel, am vrut să mă şi retrag.
020. A fost foarte greu pentru ea ı̂n ultima vreme.
021. Atât autotrenul cât şi cantitatea de ţigări au fost predate inspectorilori vamali.
022. Oncescu s-a supărat pe arbitrii care n-au fost atenţi la meciurile lui.
023. Mai mulţi agenţi sub acoperire filmează cu o cameră ascunsă, toate neregulile.
024. Avem ocazia să prezentăm un front unit.
025. Sunt doar din ce ı̂n ce mai mulţi.
026. Reţeaua Al Qaida a revendicat atacurile.
027. În primele zile nu facem nici douăzeci lei, arată Rozalia.
028. Kone a şutat din lovitură liberă peste poarta giuleşteană.
029. Cronjaeger a renunţat să ceară o contraexpertiză.
030. Familia Lăcătuş ş-ia făcut un trecut ı̂n domeniul vânzării castanelor.
031. Apă otrăvită, după cum veţi vedea ı̂n cele ce urmează.
032. Eu nu mai ı̂nţeleg pentru ce dau acei bani.
033. Îmi place mult să călătoresc, să văd lucruri noi.
034. E un sentiment aparte când ı̂i vezi pe toţi că dansează.
035. Aceeaşi situaţie s-a ı̂nregistrat şi ı̂n judeţul Vaslui, la vama Albiţa.
036. Au trecut mulţi ani de când am lucrat ı̂mpreună.
037. După o vară plină de tensiune, ı̂nvăţământul românesc trece ı̂ntr-o altă etapă.
038. Am jucat bine, dar nu vreau să mă mai avânt.
039. Răbdarea este o calitate pe care nu o deţin mulţi dascăli.
040. România aceea e la sat.
041. Înainte, am fost fierar betonist la primărie, povesteşte bărbatul.
042. Două dintre echipele româneşti au avut reproşuri la adresa arbitrajelor.
043. Irlanda respinge prin referendum ratificarea tratatului.
044. În acest caz, nu se poate spune de o schimbare.
045. Din nefericire, sunt unele persoane din sectorul financiar care ı̂nţeleg greşit momentul.
046. Artistului nu-i place neseriozitatea persoanelor cu care lucrează.
047. Aşa că am reuşit să strâng mai multe bucăţi din acelaşi manual.
048. Declară viceprimarul Cornel Ionică.
049. Cred că este nevoie doar de puţină ı̂ncredere.
050. Asociaţia nu avea statut legal atunci când am devenit eu preşedinte.

G.3 rnd3

001. Am crezut că femeia din faţa mea a murit.

169



Chapter G. Sample List of Random Utterances

002. El crede că dublarea nu este neapărat un dezavantaj pentru italieni.
003. Pe ce personaje mizaţi ı̂n noul sezon, toate personajele sunt o miză.
004. Cu toţii ne aducem aminte de aceste momente.
005. Reprezentantul sindicatului medicilor specialişti din Botoşani a reacţionat dur.
006. Astfel se răspândeşte ghinionul.
007. Ne plătim datoriile adunate ı̂n vară.
008. Aceasta este o idee bună.
009. La faţa locului s-au deplasat mai multe echipaje de prim ajutor.
010. Talk show-ul s-a transformat dintro dezbatere ı̂n spectacol.
011. Totuşi, Anderlecht reprezintă una dintre principalele pretendente la calificare ı̂n Europa

League.
012. Covrigii fierţi sunt la mare căutare ı̂n rândurile acestora.
013. Potrivit organizatorilor, bugetul festivalului se ridică la două sute mii de euro.
014. Numărătoarea inversă a ı̂nceput.
015. Dacă fura, vă daţi seama că nu ı̂mi mai cerea mie bani.
016. Nu se face aşa ceva, a spus Istudor.
017. Spune tânăra cântăreaţă.
018. Oamenii se simţeau legaţi de acel loc.
019. Ba din contră, m-au susţinut, mai spune adolescenta.
020. Îmi place foarte mult să merg la raliuri.
021. Ofiţerii din cadrul I J P F.
022. Acesta putea afecta circuitele electronice ale micilor ambarcaţiuni.
023. Iniţial, lucrările au ı̂nceput ı̂n vara anului trecut.
024. Atunci nu aveam timp de vizite, jucam şi dormeam.
025. Avem tot ce ne trebuie şi nici nu ne costă mult.
026. Dacă era nouă zero, nu era nicio problemă, nu comenta nimeni.
027. Nu vă mai complicaţi viaţa cu Plevuşcă.
028. Arunc boabele crăpate şi nu le păstrez decât pe cele sănătoase.
029. Steaua este o echipă de calitate, cu mare tradiţie ı̂n cupele europene.
030. Îmi plac şi micile şmecherii afirmă arădeanca.
031. El reprezintă districtul treisprezece, care include cartierul Queens.
032. Într-un cuvânt, Rusia dintotdeauna.
033. Finalul a fost dramatic pentru scandinav.
034. La rândul său, a oferit publicului treizeci de mingi cu autograful lui.
035. Tânăra are permisul de conducere de doar un an şi jumătate.
036. Imediat au anunţat poliţia de la secţia trei.
037. Ocupantele locurilor doi - patru vor merge ı̂n cupa EHF.
038. Poliţia comunală Mătăsari a fost sesizată aseară de către F punct V.
039. În schimb, firmele lui Penescu primeau doar contravenţii.
040. La fel, avizul de gospodărire a apelor este valabil doar cinsprezece zile.
041. La fel şi cele ale copiilor, ingenue şi pline de afecţiune.
042. Preţul scade cu ı̂ncă un pas, la o sută patru mii euro.
043. Închiderea acestui buget, la cifrele convenite, va fi oricum o mare performanţă.
044. Nu ı̂mi place singurătatea şi de aceea iubesc metropolele, spune scenarista.
045. Szekely, douăzeci şi cinci.
046. Mi-a zis cineva de la CFR că Bergodi e cam tralala.
047. Statul nu trebuie să mai fie o povară pentru cetăţeni.
048. Pentru evoluţiile lui Onicaş şi Ionescu, singura explicaţie poate fi oboseala.
049. El nu a explicat de ce Karzai a renunţat la deplasare.
050. Este vorba despre AGD.
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Sample List of Fairytale Utterances

The first 50 utterances according to the performed segmentation are presented:

H.1 Povestea lui Stan Păţitul

001. Era odată un flăcău stătut, pe care-l chema Stan.
002. Şi flăcăul acela din copilăria lui se trezise prin străini, fără să cunoască tată şi mamă şi

fără nici o rudă care să-l ocrotească şi să-l ajute.
003. Şi, ca băiat străin ce se găsea, nemernicind el de colo până colo pe la uşile oamenilor,

de unde până unde s-a oploşit de la o vreme ı̂ntr-un sat mare şi frumos.
004. Şi aici, slujind cu credinţă ba la unul, ba la altul, până la vârsta de treizeci şi mai bine

de ani, şi-a sclipuit puţine parale, câteva oi, un car cu boi şi o văcuşoară cu lapte.
005. Mai pe urmă şi-a ı̂njghebat şi o căsuţă, şi apoi s-a statornicit ı̂n satul acela pentru

totdeauna, trăgânduse la casa lui şi muncind ca pentru dânsul.
006. Vorba ceea. Şi piatra prinde muşchi dacă şede mult ı̂ntrun loc.
007. Şi cum s-a văzut flăcăul cu casă şi avere bunicică, nu mai sta locului, cum nu stă apa

pe pietre, şi mai nu-l prindea somnul de harnic ce era.
008. Dintro parte venea cu carul, ı̂n alta se ducea, şi toate treburile şi le punea la cale

singurel.
009. Nu-i vorbă că, de greu, greu ı̂i era. Pentru că, ı̂n lipsa lui, n-avea cine săi -̂ıngrijească

de casă şi de vitişoare cum trebuie.
010. Numai, dă, ce să facă bietul om. Cum era să se ı̂ntindă mai mult, că de-abia acum se

prinsese şi el cu mâinile de vatră. Şi câte a tras până s-a văzut la casa lui, numai unul Dumnezeu
ştie.

011. De aceea alerga singur zi şi noapte ı̂n toate părţile, cum putea, şi muncea ı̂n dreapta şi
ı̂n stânga, că doar doar a ı̂ncăleca pe nevoie, şapoi atunci, văzând şi făcând.

012. Toate ca toate, dar urâtul ı̂i venea de hac.
013. În zile de lucru, calea valea. se lua cu treaba şi uita de urât.
014. Dar ı̂n nopţile cele mari, când era câte o givorniţă cumplită şi se mai ı̂ntâmpla să fie şi

sărbători la mijloc, nu mai ştia ce să facă şi ı̂ncotro să apuce, vorba cântecului.
015. De urât mă duc de acasă.
016. Şi urâtul nu mă lasă.
017. De urât să fug ı̂n lume.
018. Urâtul fuge cu mine.
019. Se vede lucru că aşa e făcut omul, să nu fie singur.
020. De multe ori i-a venit flăcăului ı̂n cap să se ı̂nsoare, dar când ı̂şi aducea aminte uneori
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de câte i-au spus că au pătimit unii şi alţii de la femeile lor, se lua pe gânduri şi amâna, din zi
ı̂n zi şi de joi până mai de apoi, această poznaşă trebuşoară şi gingaşă ı̂n multe privinţe, după
cum o numea el, gândindu-se mereu la multe de toate.

021. Unii zic aşa, că femeia-i sac fără fund.
022. Cea mai fi şi asta. Alţii, că să te ferească Dumnezeu de femeia leneşă, mârşavă şi

risipitoare. alţii alte năstruşnicii, ı̂ncât nu ştii ce să crezi şi ce să nu crezi.
023. Numai nu-i vorbă că am văzut eu şi destui bărbaţi mult mai ticăiţi şi mai chitcăiţi

decât cea mai bicisnică femeie.
024. Şi aşa, trezindu-se el ı̂n multe rânduri vorbind singur, ca nebunii, sta ı̂n cumpene, să

se ı̂nsoare.
025. să nu se ı̂nsoare.
026. Şi, ba s-a ı̂nsura la toamnă, ba la iarnă, ba la primăvară, ba la vară, ba iar la toamnă,

ba vremea trece, flăcăul ı̂ncepe şi el a se trece, mergând tot ı̂nainte cu burlăcia, şi ı̂nsurătoarea
rămâne baltă.

027. Şi apoi este o vorbă: că până la douăzeci de ani se ı̂nsoară cineva singur, de la douăzeci
la douăzeci şi cinci ı̂l ı̂nsoară alţii. de la douăzeci şi cinci la treizeci ı̂l ı̂nsoară o babă, iară de la
treizeci de ani ı̂nainte numai dracu ı̂i vine de hac.

028. Tocmai aşa s-a ı̂ntâmplat şi cu flăcăul acesta că, până la vremea asta, nici el de la sine,
nici prietenii, nici babele câtu-s ele dea dracului, de prefăcute şi iscoditoare tot nu lau putut
face să se ı̂nsoare.

029. Stan era om tăcut ı̂n felul său, dar şi când da câteo vorbă dintr-̂ınsul vorba era vorbă,
la locul ei, şi nu-l putea răpune te miri cine.

030. Mulţi trăgeau nădejdea să-l ia de ginere, dar flăcăul era chitit la capul său şi nu se da
cu una, cu două.

031. Şi aşa, de la o vreme, şi prietenii şi babele, lehămetindu-se, l-au dat ı̂n burduful dracului
şi l-au lăsat pe seama lui, să facă de acum ı̂nainte ce-a şti el cu dânsul, că ei şi-au luat toată
nădejdea.

032. Amu, ı̂ntruna din zile, flăcăul se scoală de noapte, face mămăligă ı̂mbrânzită şi cea mai
dat Dumnezeu, pune mâncarea ı̂n traistă, ı̂njugă boii la car, zice Doamne ajută şi se duce la
pădure, să-şi aducă un car de lemne.

033. Şi ajungând el ı̂n pădure pe când se mijea de ziuă, a tăiat lemne, a ı̂ncărcat carul
zdravăn şi l-a cetluit bine, şi pân-or mai mânca boii, s-a pus să mănânce şi el ceva.

034. Şi după ce a mâncat cât a trebuit, i-a mai rămas o bucăţică de mămăligă ı̂mbrânzită
şi, făcând o boţ, a zis. Ce s-o mai duc acasă. ia so pun ici pe teşitura asta, că poate a găsi o
vreo lighioaie ceva, a mânca o şi ea ş-a zice o bodaproste.

035. Şi punând mămăliga pe teşitură, ı̂njugă boii, zice iar un Doamne ajută şi, pe la
prânzişor, porneşte spre casă.

036. Şi cum a pornit el din pădure, pe loc s-a şi stârnit un vifor cumplit, cu lapoviţă ı̂n
două, de nu vedeai nici ı̂nainte, nici ı̂napoi.

037. Mânia lui Dumnezeu ce era afară. să nu scoţi câine din casă, dar ı̂ncă om. ı̂nsă dracul
nu caută mai bine. La aşa vreme te face să pierzi răbdarea şi, fără să vrei, te vâră ı̂n păcat.

038. În acea zi, Scaraoschi, căpetenia dracilor, voind a-şi face mendrele cum ştie el, a dat
poruncă tuturor slugilor sale ca să apuce care ı̂ncotro a vedea cu ochii, şi pretutindene, pe mare
şi pe uscat, să vâre vrajbă ı̂ntre oameni şi să le facă pacoste.

039. Atunci dracii s-au ı̂mprăştiat, iute ca fulgerul, ı̂n toate părţile.
040. Unul din ei a apucat spre păduri, să vadă de na putea trebălui ceva şi pe acolo. doar a

face pe vrun om să bârfească ı̂mpotriva lui Dumnezeu, pe altul să-şi chinuiască boii, altuia să-i
rupă vrun capăt sau altceva de la car, altuia să-i schilodească vrun bou, pe alţii săi facă să se
bată până s-or ucide, şi câte alte bazaconii şi năzbutii de care iscodeşte şi vrăjeşte dracul.

041. Ce-or fi isprăvit ceilalţi draci nu ştim, dar acestui de la pădure nu i-a mers ı̂n acea zi.
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042. s-a pus el, nu-i vorbă, luntre şi punte ca să-şi vâre codiţa cea bârligată undeva, dar
degeaba i-a fost, că, pe unde se ducea, tot ı̂n gol umbla.

043. Şi tot cercând el ba ici, ba colea, ı̂nspre seară numai ce dă de-o pârtie.
044. Atunci se ia tiptil tiptil pe urma ei şi se duce tocmai la locul de unde ı̂ncărcase Stan

lemnele.
045. Şi, când colo, găseşte numai locul, pentru că flăcăul, după cum am spus, de mult ieşise

din pădure şi se dusese ı̂n treaba lui.
046. Văzând el dracul că nici aici n-a izbutit nimica, crâşcă din măsele şi crapă de ciudă,

pentru că era ı̂ngrijit cu ce obraz să se ı̂nfăţişeze ı̂naintea lui Scaraoschi. Şapoi, afară de aceasta,
era buimac de cap şi hămesit de foame, de atâta umblet.

047. Şi cum sta el pe gânduri, posomorât şi bezmetic, numai iaca ce vede pe-o teşitură un
boţ de mămăligă.

048. Atunci, bucuria dracului. Odată o şi haleşte şi nu zice nimica.
049. Apoi, nemaiavând ce face, ı̂şi ia coada ı̂ntre vine şi se ı̂ntoarce la stăpânu său, şi, cum

ajunge ı̂n iad, Scaraoschi ı̂l ı̂ntreabă.
050. Ei, copile, ce ispravă ai făcut. Câte suflete mi-ai arvonit. Dă-ţi solia.

H.2 Ivan Turbincă

001. Era odată un rus, pe care ı̂l chema Ivan.
002. Şi rusul acela din copilărie se trezise ı̂n oaste.
003. Şi slujind el câteva soroace de-a rândul, acuma era bătrân.
004. Şi maimarii lui, văzându-l că şi-a făcut datoria de ostaş, l-au slobozit din oaste, cu

arme cu tot, să se ducă undea vrea, dându-i şi două carboave de cheltuială.
005. Ivan atunci mulţumi maimarilor săi şi apoi, luându-şi rămas bun de la tovarăşii lui de

oaste, cu care mai trase câte-o duşcă, două de rachiu, porneşte la drum cântând.
006. Şi cum mergea Ivan, şovăind când la o margine de drum, când la alta, fără să ştie unde

se duce, puţin mai ı̂naintea lui mergeau din ı̂ntâmplare, pe-o cărare lăuntrică, Dumnezeu şi cu
Sfântul Petre, vorbind ei ştiu ce.

007. Sfântul Petre, auzind pe cineva cântând din urmă, se uită ı̂napoi şi, când colo, vede un
ostaş mătăhăind pe drum ı̂n toate părţile.

008. Doamne, zise atunci Sfântul Petre, speriat. ori hai să ne grăbim, ori să ne dăm ı̂ntr-o
parte, nu cumva ostaşul cela să aibă harţag, şi să ne găsim beleaua cu dânsul.

009. Ştii c-am mai mâncat eu o dată de la unul ca acesta o chelfăneală.
010. N-ai grijă, Petre, zise Dumnezeu.
011. De drumeţul care cântă să nu te temi.
012. Ostaşul acesta e un om bun la inimă şi milostiv.
013. Vezil. Are numai două carboave la sufletul său. Şi, drept cercare, hai, făte tu cerşetor

la capătul ist de pod, şi eu la celălalt.
014. Şi să vezi cum are să ne dea amândouă carboavele de pomană, bietul om. Aduţi aminte,

Petre, de câte ori ţi-am spus, că unii ca aceştia au să moştenească ı̂mpărăţia cerurilor.
015. Atunci Sfântul Petre se pune jos la un capăt de pod, iară Dumnezeu la celălalt şi ı̂ncep

a cere de pomană.
016. Ivan, cum ajunge ı̂n dreptul podului, scoate cele două carboave de unde le avea strânse

şi dă una lui Sfântul Petre şi una lui Dumnezeu, zicând.
017. Dar din dar se face raiul.
018. Na-vă. Dumnezeu mia dat, eu dau, şi Dumnezeu iar mi-a da, că are de unde.
019. Şi apoi Ivan ı̂ncepe iar a cânta şi se tot duce ı̂nainte.
020. Atunci Sfântul Petre zice cu mirare.
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021. Doamne, cu adevărat bun suflet de om e acesta, şi n-ar trebui să meargă nerăsplătit de
la faţa ta.

022. Dar, Petre, las că am eu purtare de grijă pentru dânsul.
023. Apoi Dumnezeu porneşte cu Sfântul Petre şi, cât ici, cât cole, ajung pe Ivan, care-o

ducea tot ı̂ntrun cântec, de parcă era toată lumea a lui.
024. Bună calea, Ivane, zise Dumnezeu.
025. Dar cânţi, cânţi, nu te-ncurci.
026. Mulţumesc dumneavoastră, zise Ivan, tresărind.
027. Dar de unde ştii aşa de bine că mă cheamă Ivan.
028. Dapoi, dacă noi şti eu, cine altul are să ştie. răspunse Dumnezeu.
029. Dar cine eşti tu, zise Ivan cam zborşit, de te lauzi că ştii toate.
030. Eu sunt cerşetorul pe care l-ai miluit colo la pod, Ivane.
031. Şi cine dă săracilor ı̂mprumută pe Dumnezeu, zice scriptura.
032. Na-ţi ı̂mprumutul ı̂napoi, căci noi nu avem trebuinţă de bani.
033. Ia, numai am vrut să dovedesc lui Petre cât eşti tu de milostiv.
034. Află acum, Ivane, că eu sunt Dumnezeu şi pot să-ţi dau orice-i cere de la mine. pentru

că şi tu eşti om cu dreptate şi darnic.
035. Ivan atunci, cuprins de fiori, pe loc s-a dezmeţit, a căzut ı̂n genunchi dinaintea lui

Dumnezeu şi a zis.
036. Doamne, dacă eşti tu cu adevărat Dumnezeu, cum zici, rogute blagosloveştemi turbinca

asta, ca ori pe cine-oi vrea eu, să-l vâr ı̂ntr-̂ınsa. Şi apoi să nu poată ieşi de aici fără ı̂nvoirea
mea.

037. Dumnezeu atunci, zâmbind, blagoslovi turbinca, după dorinţa lui Ivan, şi apoi zise.
038. Ivane, când te-i sătura tu de umblat prin lume, atunci să vii să slujeşti şi la poarta

mea, căci nu ţ-ia fi rău.
039. Cu toată bucuria, Doamne. am să vin numai decât, zise Ivan.
040. Dar acum, deodată, mă duc să văd, nu mi-a pica ceva la turbincă.
041. Şi zicând aceste, apucă peste câmpii de-a dreptul, spre nişte curţi mari, care deabia se

zăreau ı̂naintea lui, pe culmea unui deal.
042. Şi merge Ivan, şi merge, şi merge, până când, pe ı̂nserate, ajunge la curţile cele.
043. Şi cum ajunge, intră ı̂n ogradă, se ı̂nfăţişează ı̂naintea boierului şi cere găzduire.
044. Boierul acela cică era cam zgârcit, dar, văzând că Ivan este om ı̂mpărătesc, n-are ce să

facă.
045. Şi vrând nevrând, porunceşte unei slugi să dea lui Ivan ceva de mâncare şi apoi să-l

culce ı̂n nişte case nelocuite, unde culca pe toţi musafirii care veneau aşa, nitam nisam.
046. Sluga, ascultând porunca stăpânului, ia pe Ivan, ı̂i dă ceva de mâncare şi apoi ı̂l duce

la locul hotărât, să se culce.
047. Las dacă nu i-a da odihna pe nas, zise boierul ı̂n gândul său, după ce orândui cele de

cuviinţă.
048. Ştiu că are să aibă de lucru la noapte.
049. Acum să vedem care pe care. Ori el pe draci, ori dracii pe dânsul.
050. Căci trebuie să vă spun că boierul acela avea o pereche de case, mai de-o parte, ı̂n care

se zice că locuia necuratul.
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001. Semnul glumeşte din capul major.
002. Cardul curge la lista viitoare.
003. Ardeiul gol laudă oceanul.
004. Vulpea temută zice sacul.
005. Pierde paiul sau poporul.
006. Cât prescrie rucsacul bobul acru?
007. Cum lipeşte căminul ciclul bun?
008. Cortul descurcă şahul care usucă.
009. Verbul iese fără căţelul rău.
010. Numele fuge spre gamba uzată.
011. Lupul timid refuză albumul.
012. Epoca demnă exportă zidul.
013. Crează lemnul şi dragonul.
014. Unde invită aerul maistrul cinic?
015. Când aleargă stimulul pomul solar?
016. Imnul găseşte neamul care decide.
017. Şamponul doarme după butonul sec.
018. Cablul leşină sub cireaşa groasă.
019. Uleiul uzat convinge paharul.
020. Morala amară lasă afişul.
021. Ţine capacul sau deceniul.
022. Cum duce şirul secolul şocat?
023. Unde transportă inelul ciorapul lacom?
024. Lucrul percepe genul care deschide.
025. Garajul tremură ı̂n aburul pur.
026. Borcanul vine despre toamna verde.
027. Primarul alb agită şanţul.
028. Vila bună probează scaunul.
029. Manevrează gerul şi ţipătul.
030. Cât scoate regimul ficatul atent?
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031. Când editează saltul fanul tocit?
032. Balonul roade podul care depune.
033. Procentul constată peste anul ud.
034. Pragul rezistă cu apa neagră.
035. Becul dur extinde zâmbetul.
036. Ruda fină salută bonusul.
037. Testează polenul şi pionul.
038. Unde invită polenul căpitanul enorm?
039. Cât leagă ambalajul banul urban?
040. Vaporul ascultă duşul care reţine.
041. Gardul alunecă lângă nucul des.
042. Scutul survine sub vara sătulă.
043. Actorul tuns sare semnul.
044. Poşeta majoră editează spiritul.
045. Lasă camionul sau conul.
046. Cum alege contul dintele fals?
047. Când opreşte ţărmul bradul brun?
048. Cerul scrie visul care ţine.
049. Cuţitul pare lângă tigrul moale.
050. Darul uită spre găina utilă.
051. Puştiul fix remarcă trenul.
052. Reţeaua rece pozează aroma.
053. Acceptă ciocanul sau farul.
054. Cât ceartă decorul zmeul liber?
055. Când strică versul timpul mic?
056. Lacul gustă tortul care imită.
057. Oţelul tresare cu eroul spart.
058. Tânărul râde după aţa largă.
059. Peştele fin reface fulgerul.
060. Vremea toxică explorează cazanul.
061. Taie ţapul şi cheful.
062. Cum scoate bancul ursul adult?
063. Unde felicită şeful doctorul mut?
064. Tunetul egalează bobul care refuză.
065. Preţul cântă peste şarpele lung.
066. Templul alege despre taxa frumoasă.
067. Miezul ars ignoră semnalul.
068. Pudra lată ı̂mbină nodul.
069. Exclude sportul şi volanul.
070. Cum uneşte jocul cărbunele dator?
071. Când crapă textul norul real?
072. Ţinutul include vagonul care crede.
073. Racul luptă din pisoiul drag.
074. Adevărul vibrează fără baia obosită.
075. Omul des maschează izvorul.

176



076. Steaua liberă aprobă gazul.
077. Iubeşte nisipul sau cabinetul.
078. Unde fereşte actul ochiul lacom?
079. Cât calcă schimbul soţul cinic?
080. Dansul cară palatul care pictează.
081. Etajul pică ı̂n iepurele ud.
082. Zarul fumegă la culmea blondă.
083. Atomul pur opreşte aparatul.
084. Caseta vastă preia avionul.
085. Redă arcul sau iazul.
086. Cum ı̂ncearcă votul papucul fals?
087. Cât propune ciobul melcul dator?
088. Cercul compune oraşul care sapă.
089. Satul tuşeşte despre timpul fix.
090. Altarul tremură spre secţia secată.
091. Pictorul drag ı̂nscrie târgul.
092. Bursa grasă denunţă desenul.
093. Alege orezul şi minutul.
094. Unde ştie salonul colţul gol?
095. Când prinde hanul judeţul şocat?
096. Stratul aude filmul care cheamă.
097. Cadrul cade peste beciul atent.
098. Fânul zâmbeşte ı̂n camera rumenă.
099. Băiatul brun adaugă avansul.
100. Vocea rară asistă şocul.
101. Asistă metalul sau satul.
102. Cât judecă eseul părintele adult?
103. Când trimite ghiveciul soarele mut?
104. Osul scufundă testul care susţine.
105. Aurul zace la băiatul mic.
106. Metalul merge din făina rurală.
107. Vulcanul urban vede farul.
108. Soba iute apucă focul.

109. Înfundă terenul şi patul.
110. Cum citeşte cojocul ţăranul acru?
111. Unde rupe lacătul argintul enorm?
112. Fierul ridică salamul care filmează.
113. Scrumul renunţă lângă fratele liber.
114. Obiectul compară cu barca sărată.
115. Tonul dur cere cuibul.
116. Raza crudă reduce spaţiul.
117. Stinge culoarea şi ecranul.
118. Cât implică stocul pilotul rău?
119. Unde bea serialul moşul tuns?
120. Juriul sprijină procesul care aplaudă.
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121. Creionul intră după bunicul fin.
122. Anunţul revine fără poza stoarsă.
123. Berbecul tocit foloseşte plumbul.
124. Limba uscată dezgheaţă chipul.
125. Dă mesajul sau regatul.
126. Cum arde cimentul vărul uzat?
127. Când ajută iaurtul sacul spart?
128. Teatrul lansează parcul care reclamă.
129. Tractorul suspină sub cerbul solar.
130. Unghiul stă peste sora strâmbă.
131. Piciorul alb deţine digul.
132. Masa mică pomeneşte corpul.
133. Spală steagul sau geamul.
134. Când coace lanţul calul timid?
135. Cât povesteşte rândul tonul lung?
136. Turnul ı̂nchide ziarul care enumeră.
137. Basmul iese fără regele bun.
138. Anunţul umblă ı̂n cenuşa săracă.
139. Carul major roagă cadoul.
140. Uşa rotundă are discul.
141. Apelează liceul şi castelul.
142. Cum arată tariful fiul moale?
143. Unde răceşte malul căţelul real?
144. Excesul ia testul care sună.
145. Norocul oftează lângă atomul ars.
146. Efectul dispare despre fraza caldă.
147. Soarele sec preface paharul.
148. Hoaţa murdară ajunge hotelul.

149. Îngraşă vârful şi costumul.
150. Unde numără fardul ciorapul brun?
151. Cum zideşte grupul puştiul tocit?
152. Mărul acuză bolul care aduce.
153. Miezul tace cu coţLul moale.
154. Simbolul fuge la faţa străină.
155. Miezul liber suceşte secolul.
156. Doica fină distinge câmpul.
157. Vrea uleiul sau accentul.
158. Cât verifică untul bradul enorm?
159. Când ocupă catalogul doctorul major?
160. Astrul ı̂ntreabă acul care agaţă.
161. Apusul stă după căpitanul rău.
162. Nivelul intră sub banca toxică.
163. Cerbul timid ascultă valul.
164. Clipa liberă trimite degetul.
165. Usucă cheful sau podul.
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166. Unde reţine duşul fiul cinic?
167. Când explorează semnul tonul solar?
168. Zarul ia tânărul care bea.
169. Cabinetul rezistă spre maistrul alb.
170. Procesul tremură din roata rotundă.
171. Moşul acru povesteşte terenul.
172. Cheia demnă iubeşte hanul.
173. Agaţă patul şi metalul.
174. Cum ı̂mbină borcanul nucul gol?
175. Cât vede anunţul melcul mut?
176. Inelul cară paiul care opreşte.
177. Secolul iese spre bunicul tuns.
178. Spiritul renunţă fără ploaia vastă.
179. Ursul real calcă plumbul.
180. Şina rece opreşte lemnul.
181. Crede gerul şi ghiveciul.
182. Unde găseşte eseul banul lung?
183. Cum ţine acul pictorul şocat?
184. Fânul are aerul care preia.
185. Balonul survine după calul lacom.
186. Testul vibrează la fata frumoasă.
187. Ciclul fin ridică lucrul.
188. Poşta murdară ceartă testul.
189. Crează nivelul sau satul.
190. Cât filmează şeful beciul sec?
191. Când decide votul sacul dur?
192. Hotelul refuză dansul care alege.
193. Ţapul glumeşte cu ţăranul des.
194. Scaunul dispare peste figura temută.
195. Pilotul mic roagă ciocanul.
196. Cina amară editează parcul.

197. Încearcă tariful şi basmul.
198. Cât acceptă discul butonul atent?
199. Unde lasă astrul aburul bun?
200. Aparatul alege castelul care pomeneşte.
201. Degetul cade ı̂n primarul ars.
202. Osul zâmbeşte din coaja caldă.
203. Peştele fals asistă contul.
204. Gena sărată prescrie semnalul.
205. Scrie adevărul sau bolul.
206. Când depune ciobul părintele pur?
207. Cum zice spaţiul vulcanul urban?
208. Simbolul fereşte cazanul care remarcă.
209. Aurul râde despre berbecul dator.
210. Avansul leşină lângă sarea lată.
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211. Papucul ud redă lacul.
212. Marca rară agită şahul.
213. Exportă saltul sau ziarul.
214. Unde probează obiectul vărul drag?
215. Când arată farul dintele fix?
216. Efectul invită rucsacul care aprobă.
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Abstract

This paper first introduces a newly-recorded high quality Romanian speech corpus designed for speech synthesis, called “RSS”, along
with Romanian front-end text processing modules and HMM-based synthetic voices built from the corpus. All of these are now freely
available for academic use in order to promote Romanian speech technology research. The RSS corpus comprises 3500 training sen-
tences and 500 test sentences uttered by a female speaker and was recorded using multiple microphones at 96 kHz sampling frequency
in a hemianechoic chamber. The details of the new Romanian text processor we have developed are also given.

Using the database, we then revisit some basic configuration choices of speech synthesis, such as waveform sampling frequency and
auditory frequency warping scale, with the aim of improving speaker similarity, which is an acknowledged weakness of current HMM-
based speech synthesisers. As we demonstrate using perceptual tests, these configuration choices can make substantial differences to the
quality of the synthetic speech. Contrary to common practice in automatic speech recognition, higher waveform sampling frequencies
can offer enhanced feature extraction and improved speaker similarity for HMM-based speech synthesis.
� 2010 Elsevier B.V. All rights reserved.

Keywords: Speech synthesis; HTS; Romanian; HMMs; Sampling frequency; Auditory scale

1. Introduction

Romanian is an Indo-European Romance language and
has similarities with Italian, French and Spanish. Due to
foreign occupation and population migration through the
course of history, influences of various languages such as
those of the Slavic family, Greek and Hungarian can be
found in the Romanian language.

Currently, there are very few Romanian text-to-speech
(TTS) systems: Most systems are still based on diphones
(Ferencz, 1997) and the quality is relatively poor. To the
best of our knowledge, only Ivona provides commer-

cially-acceptable good quality Romanian synthesis; it is
based on unit selection (Black and Cambpbell, 1995; Hunt
and Black, 1996).1 For promoting Romanian speech tech-
nology research, especially in speech synthesis, it is there-
fore essential to improve the available infrastructure,
including free large-scale speech databases and text-pro-
cessing front-end modules.

With this goal in mind, we first introduce a newly
recorded high-quality Romanian speech corpus called
“RSS”,2 then we describe our Romanian front-end mod-
ules and the speech synthesis voices we have built.

0167-6393/$ - see front matter � 2010 Elsevier B.V. All rights reserved.

doi:10.1016/j.specom.2010.12.002
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HMM-based statistical parametric speech synthesis
(Zen et al., 2009) has been widely studied and has now
become a mainstream method for text-to-speech. The
HMM-based speech synthesis system HTS (Zen et al.,
2007c) is the principal framework that enables application
of this method to new languages; we used it to develop
these Romanian voices. It has the ability to generate natu-
ral-sounding synthetic speech and, in recent years, some
HMM-based speech synthesis systems have reached perfor-
mance levels comparable to state-of-the-art unit selection
systems (Karaiskos et al., 2008) in terms of naturalness
and intelligibility. However, relatively poor perceived
“speaker similarity” remains one of the most common
shortcomings of such systems (Yamagishi et al., 2008a).

Therefore, in the later part of this paper, we attempt to
address this shortcoming, and present the results of exper-
iments on the new RSS corpus. One possible reason that
HMM-based synthetic speech sounds less like the original
speaker than a concatenative system built from the same
data may be the use of a vocoder, which can cause buzzi-
ness or other processing artefacts. Another reason may
be that the statistical modelling itself can lead to a muffled
sound, presumably due to the process of averaging many
short-term spectra, which removes important detail.

In addition to these intrinsic reasons, we hypothesize
that there are also extrinsic problems: some basic configu-
ration choices in HMM synthesis have been simply taken
from different fields such as speech coding, automatic
speech recognition (ASR) and unit selection synthesis.
For instance, 16 kHz is generally regarded as a sufficiently
high waveform sampling frequency for speech recognition
and synthesis because speech at this sampling frequency
is intelligible to human listeners.

However speech waveforms sampled at 16 kHz still
sound slightly muffled when compared to higher sampling
frequencies. HMM synthesis has already demonstrated lev-
els of intelligibility indistinguishable from natural speech
(Karaiskos et al., 2008), but high-quality TTS needs also
to achieve naturalness and speaker similarity.3

We revisited these apparently basic issues in order to dis-
cover whether current configurations are satisfactory, espe-
cially with regard to speaker similarity. As the sampling
frequency increases, the differences between different audi-
tory frequency scales such as the Mel and Bark scales
(Zwicker and Scharf, 1965) implemented using a first-order
all-pass function become greater. Therefore we also
included a variety of different auditory scales in our
experiments.

We report the results of Blizzard-style listening tests
(Karaiskos et al., 2008) used to evaluate HMM-based
speech synthesis using higher sampling frequencies as well

as standard unit selection voices built from this corpus.
The results suggest that a higher sampling frequency can
have a substantial effect on HMM-based speech synthesis.

The article is organised as follows. Sections 2 and 3 give
details of the RSS corpus and the Romanian front-end
modules built using the Cerevoice system. In Section 4,
the training procedures of the HMM-based voices using
higher sampling frequencies are shown and then Section
5 presents the results of the Blizzard-style listening tests.
Section 6 summarises our findings and suggests future
work.

2. The Romanian speech synthesis (RSS) corpus

The Romanian speech synthesis (RSS) corpus was
recorded in a hemianechoic chamber (anechoic walls and
ceiling; floor partially anechoic) at the University of Edin-
burgh. Since the effect of microphone characteristics on
HTS voices is still unknown, we used three high quality stu-
dio microphones: a Neumann u89i (large diaphragm con-
denser), a Sennheiser MKH 800 (small diaphragm
condenser with very wide bandwidth) and a DPA 4035
(headset-mounted condenser). Fig. 1 shows the studio
setup. All recordings were made at 96 kHz sampling fre-
quency and 24 bits per sample, then downsampled to
48 kHz sampling frequency. This is a so-called over-sam-
pling method for noise reduction. Since we oversample
by a factor of 4 relative to the Nyquist rate (24 kHz) and
downsample to 48 kHz, the signal-to-noise-ratio improves
by a factor of 4. For recording, downsampling and bit rate
conversion, we used ProTools HD hardware and software.

The speaker used for the recording is a native Romanian
young female, the first author of this paper. We conducted
8 sessions over the course of a month, recording about 500
sentences in each session. At the start of each session, the
speaker listened to a previously recorded sample, in order
to attain a similar voice quality and intonation.

Fig. 1. Studio setup for recordings. Left microphone is a Sennheiser
MKH 800 and the right one is a Neumann u89i. The headset has a DPA
4035 microphone mounted on it.

3 Another practical, but equally important, factor is footprint. In unit
selection, higher sampling frequencies may lead to a larger footprint.
However, the use of higher sampling frequencies does not in itself change
the footprint of a HMM-based speech synthesis system. The use of higher
sampling frequencies increases computational costs for both methods.
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The recording scripts comprised newspaper articles, sen-
tences from novels, two short fairy tales written by the
Romanian author Ion Creangă, and semantically unpre-
dictable sentences (Benoît et al., 1996) intended for use in
intelligibility tests. The fairy tales were divided into sen-
tences and read in the original order of the work. Each sen-
tence was individually presented to the speaker using a flat
panel monitor.

This corpus contains disjoint training and test sets. The
total recording time for the training set is about 3.5 h and it
consists of about 3500 sentences: 1500 randomly chosen
newspaper sentences, 1000 newspaper sentences chosen
based on diphone coverage, and 1000 fairytale sentences.
The recording time for the test set is about 0.5 h and it
comprises 200 randomly chosen newspaper sentences, 100
randomly chosen novel sentences and 200 semantically
unpredictable sentences.

Table 1 shows the total number of different diphones
and quinphones in these subsets. Diphones are the typical
unit used for unit selection systems and quinphones are
the base unit for HMM-based speech synthesis systems.4

A larger number of types implies that the phonetic cover-
age is better. From the diphones/sentence column in the
table we can see that the subset designed for diphone cov-
erage has better coverage in terms of the number of differ-
ent diphone types but – looking at the quinphones/sentence
column – its coverage of quinphones is slightly worse than
random selection. This indicates that the appropriate text
design or sentence selection policy for HMM-based speech
synthesis should be different from that for unit selection.

All recorded sentences were manually endpointed and
have been checked for consistency against the orthographic
form. The newspaper sentences were read out using a rela-
tively flat intonation pattern, while the fairy tales had a more
narrative rhythm and prosody. Fig. 2 shows the box-plots of
F0 values extracted from all the sentences of each subset, in
which the mean is represented by a solid bar across a box
showing the quartiles, whiskers extend to 1.5 times the
inter-quartile range and outliers beyond this are represented
as circles. From this figure we can see that the subset includ-
ing fairy tales has wider F0 variation than other subsets.

3. Romanian front-end text processing

Text processing is one of the most challenging aspects of
any new language for a text-to-speech system. The great
variability among different language groups and local spe-

cific alterations to standard spelling or grammar make it an
important and vital part of any TTS system.

For Romanian, there are a few projects and publications
regarding text processing, such as Burileanu et al. (1999),
Frunza et al. (2005). However, their availability and appli-
cability is limited. For the purpose of this study, a new text
processor was developed, based on the Cerevoice develop-
ment framework (Aylett and Pidcock, 2007). Language-
dependent data has been gathered and probabilistic models
have been trained; the front-end outputs HTS format labels
comprising 53 kinds of contexts (Zen et al., 2007c). The fol-
lowing sections describe the resources used in developing
the front-end.

3.1. Text corpus

We utilised newspaper articles obtained from the RSS
feed of the Romanian free online newspaper, Adevarul.
The articles were gathered over the period of August to
September 2009 and they amount to about 4500 titles
and over 1 million words. Due to the variety of character
encodings used, the text corpus had to be cleaned and nor-
malised before further processing.

3.2. Phonemes and letter-to-sound rules

The Romanian phonetic inventory generally consists of
7 vowels, 2 to 4 semivowels and 20 consonants. Table 2

Table 1
Phonetic coverage of each subset of the RSS corpus.

Subset Sentences Size [min] Diphones Diphones/sentence Quinphones Quinphones/sentence

Random 1500 104 662 0.44 41285 27.5
Diphone 1000 53 706 0.71 26385 26.3
Fairytale 1000 67 646 0.65 29484 29.4

Fig. 2. F0 distributions in each subset.

4 The units are further extended by adding prosodic contexts mentioned
in Section 3.
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shows the phone set used in our experiments. Romanian
letter-to-sound rules are straightforward. However there
are several exceptions, which occur mainly in vowel
sequences, such as diphthongs and triphthongs. Therefore
we adopted a lightly supervised automatic learning method
for letter-to-sound rules as follows: From the text corpus,
the top 65,000 most frequent words were extracted. Gen-
eral simple initial letter-to-sound rules were written manu-
ally by a native speaker. These rules were used to
phonetically transcribe the complete list of words. To deal
with the exceptions above, the pronunciations of 1000
words chosen at random were checked, and corrected
where necessary, by a native speaker. Using this partially-
corrected dictionary of 65,000 words, letter-to-sound rules
were automatically learned using a classification and
regression tree (CART) (Breiman et al., 1984). The accu-
racy of the obtained model is about 87%, measured using
5-fold cross validation. A small additional lexicon was
manually prepared to deal mainly with neologisms, whose
pronunciations are typically hard to predict from spelling.

3.3. Accent

Romanian has no predefined accentual rules. Different
cultural and linguistic influences cause variation in the
positioning of the accent across groups of related words.
However, the online SQL database of the Romanian Expli-
cative Dictionary (DEX: http://dexonline.ro/) provides
accent positioning information. Using this information
from DEX directly, an accent location dictionary for the
65,000 most frequent words in the text corpus was
prepared.

3.4. Syllabification

Romanian syllabification has 7 basic rules, but these can
be affected by morphology, such as compound words or
hyphenated compounds. These rules apply to the ortho-
graphic form of the words. In our approach, we have used
the maximal onset principle applied to the phonetic tran-
scription of the words. Onset consonant groups and vowel
nuclei have been defined. Based on partial evaluation of the
principle, we determined that the accuracy of the syllabifi-
cation is approximately 75%. One of the major exceptions

occurs in the vowel-semivowel-vowel groups, where both
the vowel-semivowel and semivowel-vowel group can be
a diphthong, thus a nucleus. Another important exception
is represented by compound words, where the syllabifica-
tion is based on morphological decomposition and not
the standard rules.

3.5. Part-of-speech (POS) tagging

We used a Romanian POS tagger available online from
http://www.cs.ubbcluj.ro/dtatar/nlp/WebTagger/WebTag-
ger.htm. Most of the text corpus was split into sentences
and tagged using this tool. The accuracy of the POS tag-
ging is 70% on average, according to internal evaluation
results reported by the developers of the POS tagger.

3.6. HTS labels

HTS labels were generated using the text processor,
based on the recorded sentences and scripts. All the words
found in the recorded sentences were checked in the lexicon
for correct phonetic transcription and accent location.

4. Building HMM-based speech synthesis systems using a

high sampling frequency

We adopted a recent HMM-based speech synthesis sys-
tem described in (Zen et al., 2007a), which uses a set of
speaker-dependent context-dependent multi-stream left-
to-right state-tied (Young et al., 1994; Shinoda and Watan-
abe, 2000) multi-space distribution (MSD) (Tokuda et al.,
2002) hidden semi-Markov models (HSMMs) (Zen et al.,
2007b) that model three kinds of parameters, required to
drive the STRAIGHT (Kawahara et al., 1999) mel-cepstral
vocoder with mixed excitation (Kawahara et al., 2001).
Once we define context-dependent labels from the lan-
guage-dependent front-end outputs, the framework of this
system is basically language-independent and thus we can
directly use it on our data.

The sampling frequency of the speech directly affects
feature extraction and the vocoder and indirectly affects
HMM training via the analysis order of spectral features.
The following sections give an overview of how the sam-
pling frequency affects the first-order all-pass filter used
for mel-cepstral analysis and how we can utilise higher
sampling frequencies in this analysis method.

4.1. The first-order all-pass frequency-warping function

In mel-cepstral analysis (Tokuda et al., 1991), the vocal
tract transfer function H(z) is modelled by Mth order mel-
cepstral coefficients c = [c(0), . . . ,c(M)]> as follows:

HðzÞ ¼ exp c>~z ¼ exp
XM

m¼0

cðmÞ~z�m; ð1Þ

Table 2
Phone set used in the experiments, given in
SAMPA.

Vowel a @ 1 e i i_0 o u
Semivowel e_X j o w
Nasal m n
Plosive b d g k p t
Affricate ts tS dZ
Fricative f v s z S Z h
Trill r
Approximant l
Silence/pause ‘sil’ ‘pau’
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where ~z ¼ ½1;~z�1; . . . ;~z�M �>. ~z�1 is defined by a first-order
all-pass (bilinear) function

~z�1 ¼ z�1 � a
1� az�1

; jaj < 1 ð2Þ

and the warped frequency scale b(x) is given as its phase
response:

bðxÞ ¼ tan�1 ð1� a2Þ sin x
ð1þ a2Þ cos x� 2a

: ð3Þ

The phase response b(x) gives a good approximation to an
auditory frequency scale with an appropriate choice of a.

An example of frequency warping is shown in Fig. 3.
where it can be seen that, when the sampling frequency is
16 kHz, the phase response b(x) provides a good approxi-
mation to the mel scale for a = 0.42. The choice of a
depends on the sampling frequency used and the auditory
scale desired. The next section describes how to determine
this parameter for a variety of auditory scales.

4.2. The Bark and ERB scales using the first-order all-pass

function

In HMM-based speech synthesis, the mel scale is widely
used. For instance, Tokuda et al. provide appropriate a
values for the mel scale for speech sampling frequencies
from 8 kHz to 22.05 kHz (Tokuda et al., 1994b).

In addition to the mel scale, the Bark and equivalent
rectangular bandwidth (ERB) scales (Patterson, 1982) are
also well-known auditory scales. In Smith and Abel
(1999), Smith and Abel define the optimal a (in a least-
squares sense) for each scale as follows:

aBark ¼ 0:8517
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
arctanð0:06583f sÞ

p
� 0:1916; ð4Þ

aERB ¼ 0:5941
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
arctanð0:1418f sÞ

p
þ 0:03237; ð5Þ

where fs is the waveform sampling frequency. However,
note that the error between the true ERB scale and all-pass
scale approximated by aERB is three times larger than the
error for the Bark scale using aBark (Smith and Abel,
1999). Note also that as sampling rates become higher,
the accuracy of approximation using the all-pass filter be-
comes worse for both scales.

4.3. HMM training

The feature vector for the MSD-HSMMs consists of
three kinds of parameters: the mel-cepstrum, generalised
logF0 (Yamagishi and King, 2010) and a set of band-lim-
ited aperiodicity measures (Ohtani et al., 2006), plus their
velocity and acceleration features.

An overview of the training stages of the HSMMs is
shown in Fig. 4. First, monophone MSD-HSMMs are
trained from the initial segmentation using the segmental
K-means and EM algorithms (Dempster et al., 1977), con-
verted to context-dependent MSD-HSMMs and re-esti-
mated using embedded training. Then, decision-tree-
based context clustering (Young et al., 1994; Shinoda and
Watanabe, 2000) is applied to the HSMMs and the model
parameters of the HSMMs are thus tied. The clustered
HSMMs are re-estimated again using embedded training.
The clustering processes are repeated until convergence of
likelihood improvements (inner loop of Fig. 4) and the
whole process is further repeated using segmentation labels
refined with the trained models in a bootstrap fashion
(outer loop of Fig. 4). In general, speech data sampled at
higher rates requires a higher analysis order for mel-ceps-
tral analysis. We therefore started by training models on
lower sampling rate speech (16 kHz) with a low analysis
order and gradually increased the analysis order and sam-
pling rates via either re-segmentation of data or single-pass
retraining of HMMs (Yamagishi and King, 2010).

4.4. Configurable parameters

In order to establish a benchmark system which will be
useful for many future experiments, we carefully adjusted
various configurable parameters as follows:

Fig. 3. Frequency warping using the all-pass function. At a sampling
frequency of 16 kHz, a = 0.42 provides a good approximation to the mel
scale. Fig. 4. Overview of HMM training stages for HTS voice building.
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1. From initial analysis-by-synthesis tests using five sen-
tences followed by informal listening, we first chose
the spectral analysis method and order. Specifically,
we compared mel-cepstrum and mel-generalised cep-
strum (MGC) (Tokuda et al., 1994a) at orders of 50,
55, 60, 65 and 70, using Bark and ERB frequency warp-
ing scales5 using speech data sampled at 48 kHz. The
parameter to control all-pole or cepstral analysis
method was set to 3 (Tokuda et al., 1994a). The results
indicated the use of MGC with 60th order and the Bark
scale. However, the differences between the Bark and
ERB scales were found to be not as great as differences
due to the sampling frequency. Our earlier research
(Yamagishi and King, 2010) also found that the audi-
tory scale – including the Mel scale – was not a signifi-
cant factor. Therefore we omitted the ERB scale and
the Mel scale from the listening test reported later. We
repeated the same process for speech data sampled at
32 kHz and chose MGC with 44th order with the Bark
scale.

2. Preliminary HMM training was then carried out to
determine training data partitions. A total of 20 systems
resulted from combinations of the recorded data used in
sets of 500, 1000, 1500, 2500 and 3500 sentences. From
informal listening, the fairy tale sentences were found to
alter the overall quality of the synthesised speech, since
these sentences had a more dynamic prosody than the
newspaper sentences (see Fig. 2). Therefore we excluded
the fairy tale set and used a 2500 sentence set in subse-
quent experiments.

3. We employed the data-driven generalised-logarithmic F0

scale transform method proposed in (Yamagishi and
King, 2010). The maximum likelihood estimator for
the generalised logarithmic transform obtained from
F0 values of all voiced frames included in the RSS data-
base, using the optimisation method mentioned in
(Yamagishi and King, 2010), was 0.333.

4. We then separated decision trees for speech from non-
speech units (pauses and silences) rather than having a
shared single tree.

In the experiments reported in this paper, only speech
recorded using the Sennheiser MKH 800 microphone was
used. Investigation of the differences caused by microphone
type are left as future work.

5. Evaluation

5.1. Listening test

For the listening test, we used the framework from the
Blizzard Challenge (Karaiskos et al., 2008) and evaluated
speaker similarity, naturalness and intelligibility.

We recruited a total of 54 Romanian native listeners of
which 20 completed the test in purpose-built, soundproof
listening booths and the rest evaluated the systems on
their personal computers and audio devices, mostly using
headphones. They each evaluated a total of 108 sentences
randomly chosen from the test set, 36 from each category
(news, novel, SUS). The speaker similarity and natural-
ness sections contained 18 newspaper sentences and 18
novel sentences each. 36 SUSs were used to test
intelligibility.

The duration of the listening test was about 45 minutes
per listener. Listeners were able to pause the evaluation at
any point and continue at a later time, but the majority
opted for a single listening session. Most of the listeners
had rarely listened to synthetic voices; they found the
judgement of naturalness and speaker similarity to be the
most challenging aspects of the test.

Nine individual systems were built for the evaluation.
All used the same front-end text processing. They differ
in the synthesis method used (HMM-based, unit selec-
tion), sampling frequency (16 kHz, 32 kHz, 48 kHz) and
the amount of data used for the training of the voice.
The analysis of the three microphones is an interesting
topic but, in order to make the listening tests feasible,
we had to exclude this factor. The systems are identified
by letter:

A Original recordings, natural speech at 48 kHz
B Unit selection system at 16 kHz, using 3500 sentences
C Unit selection system at 32 kHz, using 3500 sentences
D Unit selection system at 48 kHz, using 3500 sentences
E HMM system at 48 kHz, using 500 training sentences
F HMM system at 48 kHz, using 1500 training sentences
G HMM system at 16 kHz, using 2500 training sentences
H HMM system at 32 kHz, using 2500 training sentences
I HMM system at 48 kHz, using 2500 training sentences

By comparing systems B, C and D with E, F, G, H and
I, we can see the effect of the synthesis method. By compar-
ing systems B, C, D or G, H, I, we can see the effect of sam-
pling frequency, per synthesis method. Comparing systems
E, F, I, we can see the effect of the amount of training data
for the HMMs.

In the speaker similarity task, after the listeners listened
to up to 4 original recording samples, they were presented
with a synthetic speech sample generated from one of the
nine systems and were asked to rate similarity to the origi-
nal speaker using a 5-point scale. The scale runs from 1
[Sounds like a totally different person] to 5 [Sounds like
exactly the same person]. In the naturalness evaluation
task, listeners used a 5-point scale from 1 [Completely
Unnatural] to 5 [Completely Natural]. In the intelligibility
task, the listeners heard a SUS and were asked to type in
what they heard. Typographical errors and spelling mis-
takes were allowed for in the scoring procedure. The SUS
each comprised a maximum of 6 frequently-used Roma-
nian words.

5 Strictly speaking, we should call them Bark-cepstrum and ERB-
cepstrum. However, for simplicity we will just call them all ‘mel-cepstrum’.
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5.2. Results

5.2.1. Speaker similarity

The left column of Fig. 5 shows the results for speaker
similarity. We first observe a clear separation between the
original voice (system A), HMM voices (systems E, F, G,
H and I) and unit selection voices (systems B, C and D).
We can also observe a clear influence of the sampling fre-
quency over speaker similarity although improvements
seem to level off at 32 kHz. This is a new and interesting
finding. Also there is some influence of the amount of train-
ing data. We can see that the difference between systems E
and F is less significant whereas the difference between sys-
tems F and I is significant. We believe that neither 500 nor
1500 sentences were sufficient for training models that can
reproduce good speaker similarity, since the dimensionality
of our features is very high due to the high order mel-ceps-
tral analysis.

Although we expected that unit selection would have
better similarity than HMM-based, the results are contrary
to our expectation. This may be explained by the corpus

design: In our corpus, only 1000 sentences were chosen
based on diphone coverage and the remaining 2500 sen-
tences consist of 1500 randomly chosen newspaper sen-
tences and 1000 fairy tale sentences. Even if we combine
both types of sentence, there are still 16 missing diphones
and 79 diphones having fewer than 3 occurrences.
Although quinphones, the base unit of HMM voices, do
not have good coverage either, unit selection systems
(which use diphone units) are known to be more sensitive
to lack of phonetic coverage, compared to HMM-based
systems (Yamagishi et al., 2008b).

5.2.2. Naturalness

We can see similar tendencies to those for the similarity
task, except that sampling frequency does not seem to have
any effect. The use of higher sampling frequency did not
improve the naturalness of synthetic speech, in contrast
to speaker similarity. This is also an interesting finding.
Regarding the amount of data, we see that there are some
fluctuations, although the largest amount of data typically
leads to the best voice for each synthesis method.
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Fig. 5. Listening tests results. There are three columns of plots and tables which are, from left to right, similarity to original speaker, mean opinion score
for naturalness, and intelligibility. The similarity and naturalness plots on the upper row are box plots where the median is represented by a solid bar
across a box showing the quartiles and whiskers extend to 1.5 times the inter-quartile range. The three tables in the middle row give the mean scores of each
system. The tables in the bottom row indicate significant differences between pairs of systems, based on Wilcoxon signed rank tests with alpha Bonferroni
corrected (1% level); ‘1’ indicates a significant difference.
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5.2.3. Intelligibility

Unfortunately there appears to be something of a ceiling
effect on intelligibility. Absolute values of WER are gener-
ally small: both synthesis methods have good intelligibility.
Even though we observe that systems D and F have a
slightly higher error rate, there are no statistically signifi-
cant differences between any pairs of synthetic voices in
terms of WER. To confirm this we performed a small addi-
tional test including paronyms and obtained the same
results. We believe that the lack of significant differences
between systems is partly caused by the nature of the sim-
ple grapheme-to-phoneme rules in Romanian. Even for
SUSs and paronyms, both natural and synthetic speech
are easy to transcribe, leading to WERs close to zero. This
result suggests there is a need for better evaluation methods
for the intelligibility of synthetic speech in languages such
as Romanian.

5.2.4. Listening environments

We performed an ANOVA test to discover whether the
listening environment affects the results. An ANOVA test
at 1% significance level shows that only the system C (unit
selection system at 32 kHz, using 3500 sentences) in the
similarity test was affected by the listening environment.
The subjects who completed the test in the listening booths
generally gave lower similarity scores for system C.

5.2.5. Summary

This RSS corpus is probably better suited to HMM-
based synthesis than to unit selection. All speech synthesis
systems built using the corpus have good intelligibility.
However, we need to design a better evaluation of the sys-
tem’s intelligibility in simple grapheme-to-phoneme lan-
guages such as Romanian.

We found that the sampling frequency is an important
factor for speaker similarity. More specifically, downsam-
pling speech data in this corpus to 32 kHz does no harm,
but downsampling to 16 kHz degrades speaker similarity.
The use of higher sampling frequency, however, did not
improve either the naturalness or intelligibility of synthetic
speech.

These results are consistent with existing findings: (Fant,
2005) mentions that almost all the linguistic information
from speech is in the frequency range 0 to 8 kHz. This
implies that a 16 kHz sampling frequency (and thus
8 kHz Nyquist frequency) is sufficient to convey the linguis-
tic information. Our results also shown that using sampling
frequencies over 16 kHz did not improve the intelligibility
of synthetic speech. On the other hand, a classic paper
regarding sampling frequency standardisation (Muraoka
et al., 1978) reported that a cut-off frequency of less than
15 kHz may deteriorate audio quality. This means that
the sampling frequency used should be higher than
30 kHz. In fact, our results do show that downsampling
to 16 kHz degrades speaker similarity. Therefore we can
conclude that the naturalness and intelligibility of synthetic
speech only require transmission of linguistic information,

which can be achieved at 16 kHz sampling frequency,
whereas speaker similarity of synthetic speech is affected
by audio quality (requiring a higher sampling rate).

5.3. Demos

We encourage interested readers to listen to audio sam-
ples comprising some of the materials used for listening
tests http://homepages.inf.ed.ac.uk/jyamagis/Demo-html/
rss.html and the first 3 chapters of a Romanian public-
domain novel “Moara cu noroc” by Ioan Slavici, available
online via http://octopus.utcluj.ro:56337/moaraCuNoroc/
moaraCuNoroc.rss. We also encourage them to test our
live demo http://octopus.utcluj.ro:56337/HTS_Romanian-
Demo/index.php. The RSS database itself can be down-
loaded from http://octopus.utcluj.ro:56337/RORelease/.

6. Conclusions

This paper has introduced a newly-recorded high-qual-
ity Romanian speech database which we call “RSS”, along
with Romanian front-end modules and HMM-based
voices. In order to promote Romanian speech technology
research, all of these resources are freely available for aca-
demic use.

From the listening tests presented here, we conclude that
(1) the RSS corpus is well-suited for HMM-based speech
synthesis and (2) that the speech synthesis systems built
from the corpus have good intelligibility.

Using the RSS corpus, we have also revisited some basic
configuration choices made in HMM-based speech synthe-
sis such as the sampling frequency and auditory scale,
which have been typically chosen based on experience from
other fields. We found that higher sampling frequencies
(above 16 kHz) improved speaker similarity. More specifi-
cally, the speech data in this corpus can be downsampled to
32 kHz without affecting results but that downsampling to
16 kHz degrades speaker similarity.

Future work includes an analysis of each of the three
microphones used and designing a better intelligibility eval-
uation for the simple grapheme-to-phoneme languages,
such as Romanian.
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Interactive Intonation Optimisation Using
CMA-ES and DCT Parameterisation of the F0
Contour for Speech Synthesis

Adriana STAN, Florin-Claudiu POP, Marcel CREMENE,
Mircea GIURGIU, Denis PALLEZ

Abstract 1 Expressive speech is one of the latest concerns of text-to-speech sys-
tems. Due to the subjectivity of expression and emotion realisation in speech, hu-
mans cannot objectively determine if one system is more expressive than the other.
Most of the text-to-speech systems have a rather flat intonation and do not provide
the option of changing the output speech. We therefore present an interactive intona-
tion optimisation method based on the pitch contour parameterisation and evolution
strategies. The Discrete Cosine Transform (DCT) is applied to the phrase level pitch
contour. Then, the genome is encoded as a vector that contains 7 most significant
DCT coefficients. Based on this initial individual, new speech samples are obtained
using an interactive Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
algorithm. We evaluate a series of parameters involved in the process, such as the
initial standard deviation, population size, the dynamic expansion of the pitch over
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the generations and the naturalness and expressivity of the resulted individuals. The
results have been evaluated on a Romanian parametric-based speech synthesiser and
provide the guidelines for the setup of an interactive optimisation system, in which
the users can subjectively select the individual which best suits their expectations
with minimum amount of fatigue.

1 Introduction

Over the last decade text-to-speech (TTS) systems have evolved to a point where in
certain scenarios, non-expert listeners cannot distinguish between human and syn-
thetic voices with 100% accuracy. One problem still arises when trying to obtain a
natural, more expressive sounding voice. Several methods have been applied ([17],
[20]), some of which have had more success than others and all of which include
intonation modelling as one of the key aspects. Intonation modelling refers to the
manipulation of the pitch or fundamental frequency (F0). The expressivity of speech
is usually attributed to a dynamic range of pitch values. But in the design of any
speech synthesis system (both concatenative and parameteric), one important re-
quirement is the flat intonation of the speech corpus, leaving limited options for the
synthesised pitch contours.

In this paper we propose an interactive intonation optimisation method based on
evolution strategies. Given the output of a synthesiser, the user can opt for a further
enhancement of its intonation. The system then evaluates the initial pitch contour
and outputs a small number of different versions of the same utterance. Provided
the user subjectively selects the best individual in each set, the next generation is
built starting from this selection. The dialogue stops when the user considers one of
a generation’s individual satisfactory. The solution for the pitch parameterisation is
the Discrete Cosine Transform (DCT) and for the interactive step, the Covariance
Matrix Adaptation-Evolution Strategy (CMA-ES).

This method is useful in the situation where non-expert users would like to
change the output of a speech synthesiser to their preference. Also, under re-
sourced languages or limited availability of speech corpora could benefit from such
a method. The prosodic enhancements selected by the user could provide long-term
feedback for the developer or could lead to a user-adaptive speech synthesis system.

1.1 Problem statement

In this subsection we emphasise some aspects of the current state-of-the-art speech
synthesisers which limit the expressiveness of the result:

Issue #1: Some of the best TTS systems benefit from the prior acquisition of
a large speech corpus and in some cases extensive hand labelling and rule-based
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intonation. But this implies a large amount of effort and resources, which are not
available for the majority of languages.

Issue #2: Most of the current TTS systems provide the user with a single un-
changeable result which can sometimes lack the emphasis or expressivity the user
might have hoped for.

Issue #3: If the results of a system can be improved, it usually implies either
additional annotation of the text or a trained specialist required to rebuild most or
all of the synthesis system.

Issue #4: Lately, there have been studies concerning more objective evaluations
of the speech synthesis, but in the end the human is the one to evaluate the result
and this is done in a purely subjective manner.

1.2 Related work

To the best of our knowledge, evolution strategies have not been previously applied
to speech synthesis. However, the related genetic algorithms have been used in artic-
ulatory [1] or neural networks based [11] speech synthesisers. A study of interactive
genetic algorithms applied to emotional speech synthesis is presented in [8]. The
authors use the XML annotation of prosody in Microsoft Speech SDK and try to
convert neutral speech to one of the six basic emotions: happiness, anger, fear, dis-
gust, surprise and sadness. The XML tags of the synthesised speech comprise the
genome. Listeners are asked to select among 10 speech samples at each generation
and to stop when they consider the emotion in one of the speech samples consistent
with the desired one. The results are then compared with an expert emotional speech
synthesis system. Interactive evolutionary computation has, on the other hand, been
applied to music synthesis [10],and music composition [3], [9].

2 DCT parameterisation of the F0 Contour

In text-to-speech one of the greatest challenges remains the intonation modelling.
There are many methods proposed in order to solve this problem, some taking into
account a phonological model [2], [15] and others simply parameterising the pitch
as a curve [18]. Curve parameterisation is a more efficient method in the sense that
no manual annotation of the text to be synthesised is needed and thus not prone to
subjectivity errors.

Because in this study we are not using prior text annotations or additional infor-
mation, we chose a parameterisation based on the DCT, that partially adresses Issue
#1 of the Problem Statement section.

DCT is a discrete transform which expresses a sequence of discrete points as a
sum of cosine functions oscillating at different frequencies with zero phase. The
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are several forms, but the most common one is DCT-II (Eq. 1). The coefficients are
computed according to Eq. 2.
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DCT applied to pitch parameterisation has been extensively studied in [7], [13]
and [19]. These works prove that DCT is an efficient way to parameterise the pitch
with minimum error. Also, the principle behind DCT adheres to the superpositional
aspect [14] of the fundamental frequency. The principle states that the pitch can be
broken down into separate layers of realisation, heuristically named phrase, word,
syllable and phoneme, in the sense that the cognitive process of speech derives a
phrase contour unto which the rest of the layers are overlapped. Another important
aspect of the DCT is its direct inverse transform. This is needed in the re-synthesis
of the pitch contour from the DCT coefficients (Eq. 1).

The method we propose addresses the issue of modelling the phrase level intona-
tion, or trend. Starting from a flat intonation, we would like to derive more dynamic
and expressive contours. Therefore, we consider the phrase layer to be represented
by the inverse DCT transform of the DCT1 to DCT7 coefficients of the pitch DCT.
This assumption is also supported by the results presented in [19]. DCT0 represents
the mean of the curve and in our case it is speaker dependent. Using DCT0 in the
genome encoding would undesirably change the pitch of the speaker, our focus be-
ing on the overall trend of the phrase intonation. The phrase level is then subtracted
from the overall contour, and the result is retained and will be referred to as high
level pitch information. Fig. 1 presents an example of a pitch contour, the phrase
level contour based on the inverse DCT of the DCT1-DCT7 coefficients and the
high level pitch information. It can be observed that the phrase level contour rep-
resents the relative trend of the voiced segments intonation, while the high level
information has a relatively flat contour with variations given by the word, syllable
and phoneme levels.

Because DCT cannot parameterise fast variations with a small number of coef-
ficients, the unvoiced segments of the F0 contour were interpolated using a cubic
function (Eq. 3). During the interactive step we apply the inverse DCT transform
over the winner’s genome, add the high level pitch information and synthesise the
speech using the resulted F0 contour.

f (x) = ax3 +bx2 + cx+d (3)
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Fig. 1 An example of a pitch contour for the utterance ”Ce mai faci” (”How are you”), the phrase
level contour based on the inverse DCT of DCT1-DCT7 coefficients and the high level pitch infor-
mation.

3 Optimisation using CMA-ES

CMA-ES (Covariance Matrix Adaptation - Evolution Strategy) was proposed by
Hansen and Ostermeier [5] as an evolutionary algorithm to solve unconstrained or
bounded constraint, non-linear optimisation problems defined in a continuous do-
main. In an evolutionary algorithm, a population of genetic representations of the
solution space, called individuals, is updated over a series of iterations, called gen-
erations. At each generation, the best individuals are selected as parents for the next
generation. The function used to evaluate individuals is called the fitness function.

The search space is explored according to the genetic operations used to update
the individuals in the parent population and generate new offspring. In the case of
evolution strategy (ES), the selection and mutation operators are primarily used, in
contrast to the genetic algorithm (GA) proposed by Holland [6], which considers a
third operator – crossover. Also, in GA the number of mutated genes per individual
is determined by the mutation probability, while in ES mutation is applied to all
genes, slightly and at random.

If mutation is according to a multivariate normal distribution of mean m and
covariance matrix C, then CMA-ES is a method to estimate C in order to minimise
the search cost (number of evaluations). First, for the mean vector m ∈Rn, which is
assimilated to the preferred solution, new individuals are sampled according to the
normal distribution described by C ∈ Rn×n:

xi = m+σyi (4)

yi ∼ Ni(0,C), i = 1..λ

where λ is the size of the offspring population and σ ∈ R+ is the step size.
Second, sampled individuals are evaluated using the defined fitness function and

the new population is selected. There are two widely used strategies for selection:
(µ +λ )-ES and (µ,λ )-ES, where µ represents the size of the parent population. In
(µ +λ )-ES, to keep the population constant, the λ worst individuals are discarded
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after the sampling process. In (µ,λ )-ES all the parent individuals are discarded from
the new population in favour of the λ new offspring.

Third, m, C and σ are updated. In the case of (µ,λ )-ES, which is the strategy we
chose to implement our solution, the new mean is calculated as follows:

m =
µ

∑
i=1

wixi (5)

w1 ≥ ..≥ wµ ,
µ

∑
i=1

wi = 1

where xi is the i-th ranked solution vector ( f (x1) ≤ .. ≤ f (xλ )) and wi is the
weight for sample xi.

The covariance matrix C determines the shape of the distribution ellipsoid and
it is updated to increase the likelihood of previously successful steps. Details about
updating C and σ can be found in [4] .

CMA-ES is the proposed solution for Issues #2, #3 and #4 through the generation
of several individuals (i.e. speech samples) the user can chose from, the extension
of the coefficients’ space and the subjective fitness function for the interactive step.

4 Proposed solution

Combining the potential of the DCT parameterisation and evolution strategies, we
introduce an interactive solution for the intonation optimisation problem, which re-
quires no previous specific knowledge of speech technology. To achieve this, three
problems need to be solved: 1) generate relevant synthetic speech samples for a user
to chose from, 2) minimise user fatigue and 3) apply the user feedback to improve
the intonation of the utterance.

We solve the first problem by using CMA-ES to generate different speech sam-
ples, normally distributed around the baseline output of a Romanian speech synthe-
sis system [16] based on HTS (Hidden Markov Models Speech Synthesis System)
[21]. We consider a genome encoded using a vector of 7 genes, where each gene
stores the value of a DCT coefficient, from DCT1 to DCT7. We start with an initial
mean vector m that stores the DCT coefficients of the F0 phrase level generated by
the HTS system and an initial covariance matrix C = I ∈ R7×7. In each generation,
new individuals are sampled according to Eq. (4).

In the next step, the user needs to evaluate generated individuals. If the popula-
tion size is too large, the user may get tired before a suitable individual is found or
might not spot significant differences between the individuals. On the other hand,
if the population size is too small and the search space is not properly explored,
a suitable individual may not be found. CMA-ES is known to converge faster even
with smaller population than other evolutionary algorithms, but it was not previously
applied to solve interactive problems. On the other hand, interactive genetic algo-
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Fig. 2 Proposed method flow chart

rithms (IGA) have been extensively studied, but do not converge as fast as CMA-ES
for non-linear non-convex problems. Faster convergence means fewer evaluations,
therefore reducing user fatigue.

For the interactive version of CMA-ES, we used a single elimination tournament
fitness [12]. In this case, the individuals are paired at random and play one game per
pair. Losers of the game are eliminated from the tournament. The process repeats
until a single champion is left. The fitness value of each individual is equal to the
number of played games. Each pair of individuals is presented to the user in the
form of two speech samples. Being a subjective evaluation, the choice would best
suit the user’s requirements, thus giving the winner of a population.

The fitness value is used by CMA-ES to update mean vector m, the covariance
matrix C and the standard deviation σ . A new population of individuals is sampled
based on the updated values and the process repeats. The flow chart of the proposed
method is presented in Fig. 2.

5 Results

The results presented below focus on establishing the correct scenario for the in-
teractive application and on the ease of use on behalf of the listeners/users. This
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Fig. 3 The histograms of the first 8 DCT coefficients of the rnd1 subset of the RSS speech corpus.
The 0x axis represents the values of the DCT coefficients separated in 50 equally spaced bins. The
0y axis is the number of coefficients equal to the values within the domain bin.

implies the evaluation of several parameters involved, such as: initial standard de-
viation of the population – gives the amount of dynamic expansion of pitch –, the
population size – determines the number of samples the user has to evaluate in each
generation, the expressivity and naturalness of the generated individuals – assures
correct values for the pitch contour.

As a preliminary step in defining the standard deviation of the population, we
employed an analysis of all the DCT coefficients within the rnd1 subset of the Ro-
manian Speech Synthesis corpus [16]. rnd1 comprises 500 newspaper sentences
read by a native Romanian female speaker. The number of phrases within this sub-
set is 730 with an average length of 1.7 seconds. The intonation of the speech is flat,
declarative. The histograms of the first 8 DCT coefficients of the phrases in rnd1 are
presented in Fig. 3. We included DCT0 as well for an overall view as it represents
the mean of the pitch contour and it is speaker dependent. This coefficient was not
used in the estimation of the phrase level contour. The means and standard devia-
tions of the coefficients are presented in Table 1. The average pitch contour resulted
from the mean values of the DCT coefficients and the average duration of the rnd1
subset is shown in Fig. 4.
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Table 1 Means and standard deviation of the DCT coefficients in rnd1 subset with corresponding
variations in Hz for an average length of 1.7 seconds.

’Coefficient Mean Mean F0 Standard Maximum F0
[Hz] deviation deviation [Hz]

- 1 std dev +1 std dev

DCT0 4690.300 251-257 1318.300 179-186 322-329

DCT1 331.750 ± 4 185.850 ±12 ±40

DCT2 -95.087 ±7 197.470 ±22 ±7

DCT3 168.270 ±12 161.030 ±0.55 ±25

DCT4 -57.100 ±4 151.600 ±16 ±7

DCT5 94.427 ±7 130.150 ±2 ±17

DCT6 -22.312 ±1 123.020 ±11 ±7

DCT7 67.095 ±5 110.370 ±3 ±13
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Fig. 4 The average pitch contour resulted from the mean values of the DCT0-DCT7 coefficients
for the average length of 1.7 seconds in the rnd1 subset.

DCT1 has the most important influence in the F0 contour after DCT0. The mean
value of the DCT1 coefficient is 331.75 with a standard deviation of 185.85 and the
maximum F0 variation is given by the +1 std. dev. (i.e. 331.75+185.85 = 517.6)
of around 40 Hz. One of the issues addressed in this paper is the expansion of
the pitch range. This means that having a standard deviation of the flat intonation
speech corpus, we should impose a higher value for it while generating new speech
samples, but it should not go up to the point where the generated pitch contours
contain F0 values which are not natural. In Fig. 5 we compare the third generation
for an initial standard deviation of 150 and 350 respectively. We can observe in the
350 case that individual 3 has F0 values going as low as 50 Hz – unnatural, while
for a standard deviation of 150, the F0 contours do not vary too much from the
original one and lead to a less dynamic output. Given these results, we selected a
standard deviation of 250. An important aspect to be noticed from Table 1 is that all
the 7 coefficients have approximately the same standard deviation. This means that
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Fig. 5 The 3rd generation population of the F0 contour for the phrase “Ce mai faci?” (”How are
you?”), with an initial standard deviation of 150 and 350 respectively. Original F0 represents the
pitch contour produced by the synthesiser.

imposing a variation based on DCT1 does not exceed natural values for the rest of
the coefficients.

The single elimination tournament fitness we used to evaluate the individuals
requires the user to provide feedback for n− 1 games, where n is the population
size. So that the population size has a great importance in setting up the interactive
application. Several values have been selected for it and the results are shown in
Fig. 6. Although the highest the number of individuals the more samples the user
can choose from, this is not necessarily a good thing in the context of user fatigue.
But having only 2 individuals does not offer enough options for the user to choose
from. We therefore suggest the use of 4 individuals per generation as a compromise
between sample variability and user fatigue.

Another evaluation is the observation of the modification of the pitch contour
from one generation to the other. Fig. 7 presents the variation of F0 from the initial
population to the third. It can be observed that starting with a rather flat contour, by
the third generation the dynamics of the pitch are much more expanded, resulting
a higher intonation variability within and between generations. It is also interesting
to observe the phrase level contours (Fig. 8). This is a more relevant evaluation as it
shows the different trends generated by CMA-ES and the trend selected by the user
in each generation. The selected trend can be used in the adaptation of the overall
synthesis. In our example, the user selected an intonation with a high starting point
and a descending slope afterwards, while another user could have chosen individual
1 which contains an initial ascending slope.
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Fig. 6 Variation in the population size. Phrase ”Ce mai faci?” (”How are you?”). Original F0
represents the pitch contour produced by the synthesiser.

In order to establish the naturalness of the generated individuals and the enhanced
expressivity of the winners of each generation, a small listening test was conducted.
At first, a user was asked to select the winners over 4 generations for 10 phrases.
Initial standard deviation was 250 and with a population size of 4. Then 10 listeners
had to attribute Mean Opinion Scores (MOS) for the samples in two categories:
Naturalness – the generated samples were compared to original recordings on a
scale of [1 - Unnatural] to [5 - Natural]. All the individuals of the four generations
were presented. Expressivity – the winners of each generation were compared to the
correspondent synthesised versions of them. The listeners had to mark on a scale
of [1-Less expressive] to [5-More expressive] the generated samples in comparison
to the synthesiser’s output. The results of the test are presented in Fig. 9. In the
naturalness test, all the generations achieved a relatively high MOS score, with some
minor differences for the 4th generation. The expressivity test reveals the fact that
all the winning samples are more expressive than the originally synthesised one.
The test preliminary conclude the advantages of this method. While maintaining the
naturalness of the speech, its expressivity is enhanced.

Examples of speech samples generated by our method can be found at http:
//www.romaniantts.com/nicso2011.
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Fig. 7 Evolution of the F0 contour over 3 generations, standard deviation = 250, phrase ”Ce mai
faci?” (”How are you?”). Original F0 represents the pitch contour produced by the synthesiser.

6 Conclusions

We introduced a new method for intonation optimisation of a speech synthesis sys-
tem based on CMA-ES and DCT parameterisation of the pitch contour. The interac-
tive manner of the optimisation allows the users to select an output which best suits
their expectations. The novelty of the solution consists in using no prosodic anno-
tations of the text, no deterministic rules and no predefined speaking styles. Also,
to the best of our knowledge, this is one of the first applications of CMA-ES for an
interactive problem.

The evaluation of the system’s parameters provide the guidelines of the setup for
an interactive application. The proposed solutions ensure an optimal value for stan-
dard deviation and population size in order to concurrently maintain the naturalness
of the speech samples, while expanding the dynamics of the pitch. The latter indica-
tors have been evaluated in the listening test. The listening test also determined the
enhancement of the expressivity of the samples.

One drawback to our solution is the lack of individual manipulation of each of
the 7 DCT coefficients in the genome, unattainable in the context of the evolution-
ary algorithm chosen. However the coefficients’ statistics showed that the average
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Fig. 8 Evolution of the phrase contour trend over 3 generations for the utterance ”Ce mai faci”
(”How are you”). Original contour represents the pitch contour produced by the synthesiser.

Fig. 9 Box plots results of the
listening test. N-Gx represent
the results for the naturalness
test of each generation and
E-Gx represent the results
for the expressivity test of
each generation. The median
is represented by a solid bar
across a box showing the
quartiles and whiskers extend
to 1.5 times the inter-quartile
range.

standard deviation is similar and thus the choice for the initial standard deviation
does not alter the higher order coefficients.

As the results obtained in this preliminary research have achieved a high-level of
intonational variation and user satisfaction, a web-based application of the interac-
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tive optimisation is under-way. The application would allow the user to select the
entire utterance or just parts of it – i.e., phrases, words or even syllables – for the
optimisation process to enhance. For a full prosodic optimisation, we would like to
include the duration of the utterance in the interactive application as well.

One interesting development would be a user-adaptive speech synthesiser. Based
on previous optimisation choices, the system could adapt in time to a certain
prosodic realisation. Having set up the entire workflow, testing different types of
fitness functions is also of great interest.
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