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Abstract—In this paper we present LSTM based neural net-
work architectures for determining the part of speech (POS)
tags for Romanian words. LSTM networks combined with fully-
connected output layers are used for predicting the root POS,
and sequence-to-sequence models composed of LSTM encoders
and decoders are evaluated for predicting the extended MSD and
CTAG tags. The highest accuracy achieved for the root POS is
99.18% and for the extended tags is 98.25%. This method proves
to be efficient for the proposed task and has the advantage of
being language independent, as no expert linguistic knowledge is
used in the input features.

Index Terms—POS tagging, recurrent neural networks, LSTM,
sequence-to-sequence, Romanian, MSD, CTAG

I. INTRODUCTION

Part of speech (POS) tagging is one of the key tasks of
natural language processing (NLP). It refers to the identifi-
cation of the part of speech of a given word and optionally,
additional grammatical properties inherent to a particular POS.
Along with other components of NLP, such as lemmatization,
stemming, syllabification, word or sentence boundary detec-
tion and many others it aims to help computers understand
and process natural language.

The difficulty of the task lays in the fact that the same
orthographic form of a word can have a different meaning
depending on the context (i.e. homographs). Another problem
is that the declination and inflections of the words are not
regular, especially in morphological rich languages, such as
the case of Romanian. As a result, to define the correct POS
of a word aside from its spelling, we also need to take into
account the semantic links between words.

The task of POS tagging can have several annotation levels.
The most basic one refers to determining the root POS
(noun, verb, adjective, pronoun, determiner, article, adverb,
adposition, conjunction, numeral, interjections, residual, ab-
breviation, part particle) and can usually be obtained from the
dictionary entry of the word’s lemma. The most complex tagset
is the Morpho-Syntactic Descriptions (MSD) set, which adds
several grammatical properties depending on the root POS [1].
Compared to MSD, the C-tagset introduced by [2] is a reduced
size tagset that adds a maximum of 3 additional properties to
the root POS. For ease of expression we will refer to the
process of determining the root or an extended tag of a word
as POS-tagging in general and denote the specific tagset where
it is necessary.

Several single or multilingual text processing tools have
been developed to perform the task of POS tagging with
the scope of being incorporated into applications such as
speech recognition, speech synthesis, machine translation or
textual information extraction. The most common approaches
among the previous studies rely on probabilistic and rule-
based methods such as Hidden Markov Models, Maximum En-
tropy Classifiers, Bayesian Networks and Conditional Random
Fields [3]. According to [3] these methods do not perform well
on languages that use a lot of inflection, such as Romanian.
In addition, rule based methods are language dependent and
might require hand-crafted rules. Tools for building these rules
have also been developed [4].

With the increasing popularity of machine learning, deep
neural networks have also been successfully applied to NLP
tasks. Neural network based algorithms have been used and
compared to probabilistic POS-taggers since the 1990’s [5] for
the English language. To the best of our knowledge the first
accuracy results for POS-tagging with neural networks applied
to the Romanian language were reported in [3].

Studies concerning the Romanian language are also nu-
merous with a relatively high reported accuracy. Tufiş et al.
[2] achieved an accuracy of 98.39% using a tiered tagging
with C-tagset for the language model, extended with a post-
processor using probabilistic methods to reconstruct the MSD
tag. [4] and [6] present hybrid methods combining statistical
models with a rule based system that classifies tagging errors
and reduces the need for manual rule construction. The best
accuracy obtained by Simionescu is 97.03%. [3] reports an
accuracy of 98.17% for MSD-tagging by implementing feed-
forward neural networks with genetic algorithms used for
designing the network topology. The BAILE multilanguage
system [8] obtains an accuracy of 95.03% for POS-tagging for
the Romanian language. Similar accuracy, 96.12% is achieved
by [7] using a Naive Bayes model with a word database. All

TABLE I
POS-TAGGING ACCURACY RESULTS FOR ROMANIAN REPORTED IN THE

LITERATURE

Authors Method Accuracy Tagset
Tufis & Mason [2] Probabilistic 98.39% MSD
Boros & Dumitrescu [3] Deep Neural Networks 98.19% MSD
Simionescu [6] Probabilistic & Rule-based 97.03% MSD
Teodorescu et al. [7] Probabilistic 96.12% Root POS
Frunza et al. [8] Machine Learning 95.30% Root POS



Fig. 1. LSTM memory cell [13]

the above results are summarized in Table I.
Starting from this overview, in this work we investigate

the use of a recurrent neural network model with Long
Short Term Memory (LSTM) layers for POS-tagging taking
into consideration previous studies evaluated on several other
languages (not including Romanian) [9], [10]. They conclude
that LSTM networks work well for determining the POS-
tag, not only with limited, but also with extended tagsets.
We compare the results obtained with LSTM networks to
a sequence-to-sequence model composed of LSTM encoders
and decoders used for determining extended tags.

The paper is structured as follows: the proposed methods
for POS-tagging are described in Section II, and the details
of training data and implementation are elaborated in Section
III. We discuss the results in Section IV. The conclusions and
possible future work are summarized in Section V.

II. METHOD OVERVIEW

As neural network based learning methods are now widely
used in many areas of NLP and speech processing applica-
tions, in this article we focus on experimenting with different
neural network architectures to determine the root POS or the
extended tag.

Recurrent neural networks (RNN) are highly efficient in
sequential data modelling. Their main advantage is that their
output combines the current input with the output of the
previous time step. Therefore it can extend its understanding of
the data to the temporal connections between sequential inputs.
However, vanilla RNNs cannot expand across long temporal
sequences [11]. To overcome this disadvantage, Long Short
Term Memory (LSTM) structures can be used [12]. These
structures are based on recurrent nodes, but are extended with
a memory cell which can model long-term dependencies in
the input data. The memory cell contains a set of gates which
decides what previous information needs to be saved in the cell
state (memory), what needs to be discarded and how much the
current input and stored memory will influence the output of
the cell. The memory cell components are depicted in Figure 1.

The behaviour of the cell gates are described by Equa-
tions 1, 2, and 3:

it = σ(wi[ht−1, xt] + bi) (1)

ft = σ(wf [ht−1, xt] + bf ) (2)

ot = σ(wo[ht−1, xt] + bo) (3)

where σ is the sigmoid function, and i, f , o are the input,
forget, output gates, respectively, at time step t. wx are the
weights of the appropriate gate(x), xt is the input at time step
t and bx is the bias for the respective gate(x). The states of the
cell at the current time step t are stored in cell vector ct and
hidden vector ht. These state vectors have the same dimension
as the cell gate vectors. Equations 4 and 5 describe the state
vectors:

ct = ftCt−1 + it tanh (wc[ht−1, xt] + bc) (4)

ht = ot tanh ct (5)

where ct – the cell state is computed based on the previous
state with a sigmoid activation function computed in training
time and with the candidate for the current state.

The hidden state is calculated from the cell state passed
through an activation function and element-wise multiplied
with the output vector at time step t.

In our experiments to predict the root POS-tag (containing
a single character) we added to the LSTM layers a fully-
connected (dense) layer. The unit size of this layer is set to
the number of possible POS-tags. The behaviour of this layer
is described in Equation 6:

ox = (Wx) + b (6)

where the output is calculated based on the inputs (x), weight
(W ) and bias (b).

To determine the MSD tag of the word, a sequence-to-
sequence (seq2seq) [14] learning method was applied. RNN
networks can be used when the input and output vectors can be
encoded with fixed-dimension vectors and are not appropriate
for defining the variable length MSD tag of a word. The
seq2seq model is composed of an encoder and a decoder.
The encoder and decoder are both neural networks that are
frequently implemented with LSTM cells.

The encoder is responsible for interpreting the input data,
one time step at a time, and converting it into a fixed dimension
vector representation. The decoder uses the hidden or output
state of the encoder to condition its own output. In general,
the decoder is trained with one time step-delayed sequences.
This means that it learns to predict the next character or word
in the output sequence. Figure 2 presents the seq2seq model
for the word ”acasă” as input and ”Rg” as output sequence,
where <SS> marks the start and <SE> the end of sequence.

III. EVALUATION

A. Tagsets

Different tagsets can be used for POS-tagging to indicate the
POS and/or additional grammatical categories. The tagset is
language dependent and contains all possible parts of speech in
the respective language. For Romanian, we used the following
tagsets: root tagset (ID:RPOS), MSD-tagset (ID:MSD) and
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Fig. 2. Sequence-to-sequence model input and output sequence example

TABLE II
NUMBER OF TAGS PER TAGSET

Tagset No. of tags used
Basic 13
MSD 334
CTAG 89

TABLE III
MSD TAG EXAMPLES FOR A VERB AND A NOUN

Vmp3pf Ncmsrn
V verb N noun
m main c common
p participle m masculin
3 third person s singular
p plural r nominative
f feminine n not definite

C-tagset (ID:CTAG). The number of different tags used from
each tagset is shown in Table II.

The most basic tagset contains only the part of speech of
the word’s lemma as extracted from a linguistic dictionary (e.g
’V’ for verb, ’N’ for noun, ’A’ for adjective etc.). We refer to
this as the root POS tag.

The MSD (Morpho-Syntactic Descriptions) is an extended
tagset containing the codes defined by the MULTEXT-EAST
project [1]. The number of MSD tags varies per dataset and
according to [15] a number of 615 tags were described for
the Romanian word-form lexicon. The MSD is a hierarchical
POS representation, where the first upper case letter represents
the root POS followed by the lexical attributes of the POS.
Examples for a verb and noun MSD tag are shown in Table III.

A different tagset, called C-tagset (CTAG) was introduced
in [2]. CTAG is a reduced version of the MSD and can
be mapped to it directly. For example ’NSRN’ stands for a
common noun, that is singular, direct and indefinite. We used
this tagset when training on large amounts of text where the
tag is defined based on the context of the word.

B. Datasets

Three different datasets were used for the training part. Most
of the experiments were run on the morphological dictionary
created by Simionescu [4] with the help of DexOnline database

TABLE IV
NUMBER OF TRAINING AND TEST SAMPLES PER DATASET

Dataset Total samples No. of training samples No. of test samples
WPT 1,715,881 897,328 224,331
DEX 1,994,412 936,611 234,152

CoRoLa 3,075,165 2,460,132 615,033

and Wikipedia1 proper nouns collection (ID:WPT).2 This
dataset consists of 1,715,881 words associated with one or
more MSD tags. For the POS-tagging training we used the
first character of the MSD tag. If multiple tags were available
for the same orthographic form, only the first entry was used.
For evaluation purposes the test data was validated against all
possible tags assigned to the word sample.

The second dataset we used is the Romanian Explicative
Dictionary database (ID:DEX)3 that contains 1,994,412 words,
each associated with one or more POS-tags and a word
frequency. The words with 0 frequency were removed from
the training, resulting in a set of 1,158,197 samples.

The third dataset consists of 125,316 sentences selected
from the CoRoLa [16] corpus (ID:CoRoLa).4 The sentences
contain 3,075,165 words with a number of 175,946 unique
words. The CoRoLa corpus provides linguistic attributes for all
words including the MSD and CTAG annotations and contains
texts of different styles such as juridical or scientific. The word
samples were collected from these texts randomly.

The first two datasets contain individual words with single
or multiple POS or MSD information attached. The third
dataset provides context-related information as the tags are
assigned to words of the sentences. From each dataset 20%
of the samples was randomly selected for testing and the
remaining 80% used for training. The number of train and
test samples is summarized in Table IV.

C. Data input format

The input data was coded either with one-hot-encoding
(ID:OHE) or letter embedding (ID:LE). In the former encod-
ing the words are represented by a two-dimensional binary
matrix. The size of the matrix depends on the number of
input characters and the maximum length of the input words.
The letter embedding uses a dense representation of each
character that contains information about the context of the
selected character which is important for POS-tagging [17].
The Gensim5 library was used to create a letter embedding of
order 30 based on the Romanian Wikipedia pages’ database
dump. The order was selected to be close to the number of
characters in the Romanian alphabet.

Word embeddings were not considered in our study, as the
focus was to predict the POS tags using only the orthographic
form of the words, independent of their linguistic context.

1https://ro.wikipedia.org/
2http://nlptools.infoiasi.ro/WebPosTagger
3https://dexonline.ro/
4http://corola.racai.ro/
5https://radimrehurek.com/gensim/
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Fig. 3. LSTM with dense layers model

D. System architectures

For the implementation we used the Keras6 deep learning
library with TensorFlow7 backend. We grouped our network
architectures into the following categories:

1) LSTM with fully-connected (dense) layers: The input
data was one-hot encoded or used letter embeddings and
provided to a first LSTM layer. The latent dimension of the
LSTM layer varied from 64 to 1024. On top of the LSTM layer
two dense layers were stacked. The second dense layer serves
as the output layer, having the size equal to the number of
possible POS-tags. The architecture of this network is shown
in Figure 3.

2) Sequence-to-Sequence Model: A character-level
sequence-to-sequence (seq2seq) model is used for the MSD
tagging. The input sequences are the words and the MSD tags
of the target sequences. The encoder LSTM layer converts
the input sequence into state vectors. The decoder LSTM
layer uses the initial state vectors of the encoder and turns the
target sequences into the same sequence offset by one time
step. Teacher enforcing is used to generate the next character,
as the decoder generates the target[t+ 1, ...] sequence given
the sequence target[..., t]. We add a starting and ending
character to each target sequence. An example of an input
and target sequence composed of 4 words is shown below:

Input sequence: ’Absolvent al Facultăţii de’
Target sequence: ’#NSN TS NSOY S@’

When an unknown input sequence is decoded, we begin
with the starting character and use the decoder to predict
the next character until the end of sequence character or a
maximum sequence length is reached.

The sequence-to-sequence model was used to determine
the CTAGs within the context of sentences. The encoder and

6https://keras.io/
7https://www.tensorflow.org/
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Fig. 4. LSTM sequence-to-sequence model

decoder models were trained with a sliding window over the
words. The networks we trained used 3 to 5 words and were
shifted to the right by one word for each sample. The best
accuracy for the tags was achieved when the training samples
were composed of 3 words. The architecture of this network
is shown in Figure 4.

IV. RESULTS AND DISCUSSIONS

Each network was evaluated on 20% of the initial dataset
held out of the training data. The efficiency of the training
method was measured by accuracy: dividing of the number of
correct predictions by the total number of predictions. When
calculating the accuracy for the MSD tags we only considered
as correct outputs the predicted sequences that fully matched
the target MSD-tag. The parameters and accuracy results are
shown in Table V. The asterisk (*) marks the systems where
we considered all possible tags associated with the words as
correct answers, and not only the first entry tag.

The test data was randomly selected, and both training and
test samples were shuffled before training. Based on initial
tests we choose to set the batch sizes to 256, 512 or 1024.
The best results were obtained with a batch size of 512. The
latent dimension of the LSTM cells was evaluated with 64,
128, 256, 512 respectively 1024, the best accuracy numbers
were achieved with size 256.

The best accuracy for the root POS-tagging (when predict-
ing only a single character) was 99.18% (System ID 1). This
outperforms all the systems presented in Table I which predict
the root POS. When the same network was validated against
only the most frequent POS and not all the possible POS tags
available in the dataset, the accuracy was 94.85% (System
ID 2). The accuracy breakdown per root POS is shown in
Table VI. The POS types that did not end up in the test set
due to their low count and the random selection, are marked
with a not applicable (N/A) accuracy. The loss was calculated



TABLE V
NETWORK PARAMETERS AND ACCURACY RESULTS

System ID Dataset Tag Network type Character encoding Latent dimension Batch size Epochs Accuracy
1 WPT RPOS LSTM + Dense (*) OHE 256 512 50 99.18%
2 WPT RPOS LSTM + Dense OHE 256 512 50 94.85%
3 WPT RPOS LSTM + Dense LE 256 256 25 54.80%
4 WPT RPOS seq2seq LSTM LE 256 256 25 94.99%
5 WPT RPOS seq2seq + Embedding layer OHE 256 256 20 93.88%
6 WPT MSD seq2seq LSTM (*) OHE 512 1024 50 98.25%
7 WPT MSD seq2seq LSTM OHE 512 1024 50 75.28%
8 WPT MSD seq2seq + Embedding layer OHE 256 512 50 76.62%
9 DEX RPOS LSTM + Dense OHE 256 512 50 94%
10 CoRoLa CTAG seq2seq LSTM OHE 256 512 100 97.15%
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Fig. 5. The model accuracy and loss during training for System ID 1

TABLE VI
ACCURACY SUMMARY PER POS FOR SYSTEM ID 1

POS No. of train No. of test Accuracy
samples samples

Noun 471470 118133 99.86%
Adjective 232731 58457 99.86%
Verb 191489 47320 99.76%
Adverb 783 212 98.29%
Numeral 214 65 98.21%
Pronoun 220 48 97.76%
Determiner 161 37 98.99%
Interjections 156 37 96.37%
Abbreviation 58 0 N/A
Adposition 39 9 97.92%
Conjunction 12 0 N/A
Article 6 0 N/A
Part Particle 2 0 N/A

with categorical cross entropy method. The training accuracy
and loss values of this model are shown in Figure 5.

The sequence-to-sequence model achieved an accuracy of
98.25% for the MSD tags (System ID 6). Compared to the
POS prediction where the model only needed to predict one
of the 13 root POS tags, the MSD model needs to predict 334
possible tags. Our results are comparable to the ones reported
in [2]. However, the evaluation datasets are different, and [2]
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Fig. 6. The model accuracy and loss during training for System ID 6

also uses context information.
The sequence-to-sequence model on CTAGs obtained an

accuracy of 97.15%. The loss and accuracy values during
model training are shown on Figure 6. This model uses context
related information which improves the performance and could
be extended to hierarchically predict MSD tags.

The models were tested with letter embeddings as input
and also with the input layer replaced by an embedding layer.
Changing the input did not result in higher accuracy. This
could be explained by the fact that in the case of LE the
positional information of a letter does not change the POS. In
the case of the embedding layer the available data might not
be sufficient for a good representation learning of the input.

V. CONCLUSIONS AND FUTURE WORK

In this paper we evaluated two different types of neural
network architectures for POS-tagging, applied on the Roma-
nian language. LSTM networks with fully-connected layers
performed well on predicting the root POS, while sequence-to-
sequence models achieved high accuracy for defining extended
tags, such as the MSD and CTAGs. The addition of the letter
embeddings and using embedding layers instead of the one-
hot-encoding for representing the input data did not result in
higher accuracy.

Despite the very good results obtained by our network
architectures, there is still a need to explore other network ar-
chitectures, such as convolutional neural networks, especially



for the extended tagsets. Adding other linguistic information,
such as lemma or lexical stress could improve the accuracy of
the POS taggers, especially in the case of homographs.
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