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Abstract—In this paper we address the issue of automatic
diacritics restoration (ADR) for Romanian using deep learning
strategies.

We compare 6 separate architectures with various mixtures
of recurrent and convolutional layers. The input consists in se-
quences of consecutive words stripped of their diacritic symbols.
The network’s task is to learn to restore the diacritics for the
entire sequence. No additional linguistic or semantic information
is used as input to the networks.

The best results were obtained with a CNN-based architecture
and achieved an accuracy of 97% at word level. At diacritic-level
the accuracy of the same architecture is 89%.

Index Terms—automatic diacritics restoration, deep neural
networks, LSTM, CNN, sequence-to-sequence, Romanian

I. INTRODUCTION

Automatic Diacritics Restoration (ADR) is the process of
restoring the diacritic symbols in orthographic texts. The
applications of this process are numerous and include: spelling
checkers, lexical disambiguation, part-of-speech tagging, nat-
ural language understanding, etc. The lack of diacritics is
predominant in electronic texts where the user does not
use adequate text editing software, or is not technologically
proficient so as to use the diacritic symbols specific to his or
her native/acquired language.

Most of the European languages contain different sets of
diacritic symbols in their alphabets, with the most numerous
being in French and Slovak. The set of diacritics used in
European languages based on the Latin alphabet are illustrated
in Table I.

Romanian uses 5 diacritic letters: ă, â, ı̂, ş and ţ. Although
not all words have alternative spellings with and without
diacritics, in some cases, a missing diacritic could completely
change a word’s meaning (e.g peste = over vs. peşte = fish),
while in other cases, the absence of the appropriate diacritic
in the word’s ending letter makes it impossible to discern
between the definite or indefinite form of a noun (mamă =
a mother vs. mama = the mother).

Tufiş et al. [1] reports that between 25% and 45% of the
Romanian words contain diacritics, while in a random French
text, only 15% of the words contain diacritic symbols [2]. The
diacritic percentage across the European languages is reported
in [3].

Motivated by the the relevance of diacritic restoration across
various text-based applications, in this work we address the
Romanian ADR problem using sequence-to-sequence deep

TABLE I
DIACRITICS IN EUROPEAN LANGUAGES WITH LATIN BASED ALPHABETS

Language Diacritics Language Diacritics
Albanian ç ë Italian á è é ı̀ ı́ ı̈ ò ó ù ú
Basque ñ ü Lower Sorbian c̀ c̆ ĕ ł ń ŕ ś s̆ ź z̆
Breton â ê ñ ú ö Maltese ċ ġ ż
Catalan à ç è é ı́ ı̈ ò ó ú ü Norwegian å æ ø
Czech á c̆ é ı́ n̄ ó r̄ s̄ ý z̄ Polish a̧ ȩ ć ł ń ó ’s ’z ż
Danish å æ ø Portuguese â ă ç ê ó ô ŭ ü
Dutch ë Romanian ă â ı̂ ş ţ
English none Sami á ı̈ ĉ d- ń ņ š t- ž
Estonian ä č ō ö ž Serbo-Croatian ć č d- š ž
Faroese á æ d- ó øú ý Slovak á ä č d’ é ĺ ñ ó ô ŕ š

t’ ú ý ž
Finnish ä å ö š ž Slovene č š ž
French á â æ ç é è ë ê ı̂ œ ù û ÿ Spanish á é ı́ ó ú ü ñ
Gaelic á é ı́ ó ú Swedish ä å ö
German ä ö ü ß Turkish ç ǧ ö ş ü
Hungarian á é ı́ ó ö ő ú ü ű Upper Sorbian ć č ě ł ń ó ř š ž
Icelandic á æ ∂ é ı́ ó ö ú ý Welsh ǎ ě ǐ ǒ ǔ w̌ y̌

learning architectures based on convolutional and recurrent
neural networks.

The paper is structured as follows: Section II is a brief
overview of the state-of-the-art methods used in ADR. Sec-
tion III outlines the sequence-to-sequence architectures, while
Section IV presents the dataset and the tested architectures.
The final results are illustrated in Section V. The conclusions
and future perspectives are summarized in Section VI.

II. RELATED WORK

With the increase in the use of electronic devices across
different social and cultural categories, the need for high-
quality ADR applications is more prevalent, and so is the
number of published scientific studies. Simard [2] employs
Hidden Markov Models trained at word level on French texts.
For the Vietnamese language, Nguyen et al. [4] combine
Adaboost and C4.5 decision tree classifiers with a letter-based
feature set in five different strategies: learning from letters,
learning from semi-syllables, learning from syllables, learning
from words, and learning from bi-grams.

A deep learning approach for diacritics restoration is pro-
posed by Náplava et. al. in [5] and uses Bidirectional Neural
Networks combined with a language model. The model was
tested for 23 languages, including among others Czech, Slovak
and Romanian.

For the Romanian language, in particular, the works of
Mihalcea et al. [3], [6] explore instance based learning at letter
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Fig. 1. Sequence-to-sequence flow

level, using the Tilburg memory and the C4.5 decision tree
classifier, scoring an overall F-measure of 98.30 %.

Tufiş et al. [1] propose a Part-Of-Speech tagger and the use
of two lexicons to solve the ambiguity problem in Romanian
ADR. An overall accuracy of 97.4 % is achieved at word level.

Ungureanu et. al [7] propose a word classification schema,
based on the occurrence of diacritics in each word (words
always written with diacritics, words with no diacritics at all
and words with different diacritical written pattern - words
which change their meaning as diacritics are missing, as shown
in Section I). Then these categories are distilled into two
dictionaries. During training and testing, the two lexicons are
used to improve the ADR results, obtaining an overall F-
measure of 99.34%.

In [8] Petrică presents a diacritics restoration system trained
on unreliable raw data sets. First, the correctly spelled sections
are identified and used as training data for the ADR. Second,
the trained ADR is applied to the remaining parts of the initial
text.

The previously described approaches use language models
and linguistic information extracted from the texts at different
levels. In this work, we propose a deep learning approach to
solve the ADR problem for Romanian using only character
sequences and without any expert linguistic knowledge.

III. SEQUENCE TO SEQUENCE LEARNING

The sequence-to-sequence (seq2seq) [9] architecture is de-
signed to handle input and output sequences with different
lengths. The most common applications for this architec-
ture include automatic machine translation, video captioning,
speech recognition and speech synthesis.

Broadly speaking, the seq2seq architecture is formed of two
parts: an encoder and a decoder, each of them being a separate
neural network. The encoder is responsible for understanding
the input and representing it in a lower dimensional space.
The output of the encoder will then be used to condition the
decoding network’s prediction. Figure 1 presents a seq2seq
model for the word ”masa” as input and ”masă” as output.
The tags <SS> and <SE> mark the start and the end of
the sequence. The most prevalent architectures behind the
encoders/decoders are the recurrent and convolutional neural
networks.

Fig. 2. LSTM memory cell [11]

A. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a type of neural
network in which the output of the current time step is
conditioned on the output of the previous time step. As a result,
RNNs are commonly used to model temporal sequences.
However, a major problem with vanilla RNNs is that they
cannot model sequences in which the temporal dependencies
are stretched across multiple time steps.

The solution for this problem is to use more advanced
network nodes, in which an internal state of the node can
memorize or forget data snippets which are of interest to the
current prediction. One such specialized node is the Long
Short Term Memory (LSTM) cell [10].

A LSTM cell (graphically depicted in Figure 2) contains
the following elements:

• forget gate ft - a neural network (NN) with sigmoid
activation

• input gate it - a NN with sigmoid activation
• output gate ot - a NN with sigmoid activation
• hidden state ht - a vector
• memory state ct - a vector
The input gate selects what new information to be stored

in the current cell at a time step t. The forget-gate expresses
the amount of information which will be discarded, while the
output-gate will provide the activation to the final output of
the LSTM block. The hidden state is calculated from the cell
state passed through an activation function and element-wise
multiplied with the output vector at the time step t.

B. Convolutional Neural Networks

Convolutional Neural Networks (CNN), originally used in
image processing, are another type of deep networks largely
used for pattern recognition tasks.

A simple CNN architecture contains the following elements:
• a convolutional layer
• a non-linear activation layer
• a pooling (or sub sampling) layer
• a fully connected (softmax) output layer.
The convolutional layer defines a non-linear filter bank (or

kernel), which is shifted over the input features using a fixed
stride and generates a multi-dimensional feature map, which
is processed by a non-linear activation function. The pooling
layer reduces the representation of the convolutional layer’s



output, as well as decreases the memory requirements. In
general, the polling layer is placed between the convolutional
layers. The features with the highest values (maxpool) are
fed into a fully connected layer, whose activations are finally
passed into a softmax layer. The output of the softmax
function represents the estimated probability distribution over
the output labels. In some cases, a normalization layer is
stacked on the pooling layer to normalize the data, with mean
0 and variance 1. The normalization step ensures the networks
stability.

The characteristics highlighted above make the seq2seq
learning a good candidate for the Romanian ADR problem.

IV. EXPERIMENTAL SETUP

A. Training Data

For training and testing our models, we selected a subset
of the CoRoLa text corpus [12]. The subset contains 51.043
sentences with 1 million tokens and 63.194 unique words. The
style of the text is belletristic. The corpus is not purposely
build for ADR tasks, but can be considered as a reliable source
of correctly typed text (i.e. containing the correct diacritics)
in Romanian as it was manually annotated at word-level
with several linguistic information. We subsequently split the
dataset into disjoint training (80%) and testing (20%) sets,
each of them being individually shuffled.

A few pre-processing steps were performed and include the
following operations:

• convert text to lowercase
• strip the digits and punctuation
• strip the diacritics
• parse the text in trigrams
• create pairs of input-target sequences
• append a start-character (”\t”) and an end-character

(”\n”) to the target trigram
An example of a pre-processed sentence is shown in

Table II. The obtained input-output pairs are illustrated in
Table III.

TABLE II
PRE-PROCESSING EXAMPLE

Initial sentence ”Mă uitasem la ceas, era ı̂ncă ora 22.00.”
Pre-processed sentence ”ma uitasem la ceas era inca ora”

TABLE III
INPUT-OUTPUT TRIGRAMS FOR A CHOSEN SENTENCE

Input sequence Target sequence
ma uitasem la \t mă uitasem la \n
uitasem la ceas \t uitasem la ceas \n
la ceas era \t la ceas era \n
ceas era inca \t ceas era ı̂ncă \n
era inca ora \t era ı̂ncă ora \n

When an unknown input sequence is decoded, we begin
with the starting character and use the decoder to predict the
next character until the ending character is generated. The

Encoder_Input: InputLayer

Encoder_Layer: LSTM Decoder_Input: InputLayer

Decoder_Layer: LSTM

Decoder_Output: Dense

Fig. 3. seq2seq-LSTM model architecture

trigrams were chosen to represent the context of the current
sequence.

After the pre-processing steps, the train set ended-up con-
taining 616.691 tokens, while the test set contained 162.791
tokens.

B. System architectures

For our initial tests we selected two ADR systems [5], [13]
previously applied for Romanian. The systems were retrained
using our dataset, but preserving the original parameter values.

Inspired by the architectures described in these two systems,
we analyzed four other architectures with various combina-
tions of recurrent and convolutional layers. For implemen-
tation, we relied on Keras1 with TensorFlow2 as backend.
The networks’ hyperparameters were tuned using a small
development set.

All 6 architectures are described in the following subsec-
tions with the previously published works marked with an
asterisk (*). All systems were trained over 50 epochs.

1) One layer LSTMs (ID: seq2seq LSTM): In the RNN
sequence-to-sequence architecture the encoder and decoder
both included one LSTM layer. A latent dimension of 128 for
both layers and a batch size of 512 were chosen. The input
to the encoder and decoder was one-hot encoding at character
level. The input of the decoder was also conditioned on the
hidden state of the encoder. The output of the decoder LSTM
layer is sent to a softmax dense layer with a dimension equal to
the length of the one-hot encoded target character set. Figure
3 illustrates the architecture design of the RNN architecture.

2) Stacked LSTMs (seq2seq stacked * LSTM): In order to
improve the results, one additional LSTM layer was added to
the encoder. The newly obtained encoder was tested in two dif-
ferent contexts. First, we used a 1 LSTM layer for the decoder
(ID: seq2seq stacked 1 LSTM). Then, another LSTM layer
was stacked in the decoder (ID: seq2seq stacked 2 LSTM).

1https://keras.io/
2https://www.tensorflow.org/



The model seq2seq stacked 1 LSTM was trained with
a 256 latent dimension and 128 batch size. For model
seq2seq stacked 2 LSTM a batch size of 512 and a latent
dimension of 128 were used.

encoder_input: InputLayer

encoder_lstm1: LSTM

encoder_lstm2: LSTM

lstm_2: LSTM

input_2: InputLayer

dense_2: Dense

Fig. 4. seq2seq stacked 1 LSTM model architecture

3) Convolutional Sequence-to-Sequence (ID:
seq2seq CNN): In our experiments, the CNN architecture
contains 3 convolutional layers with 128 feature maps and
a kernel of size 3, for both the encoder and the decoder
networks. An attention architecture with a softmax activation
follows the 3-layered convolutional decoder networks. The
output is processed by another 2 convolutional layered
architecture, with a softmax dense output. Figure 5 illustrates
the model structure. The model is trained with a batch size
of 1024 and a 128 latent dimension.

4) *RNN and CNN hybrid model (ID: seq2seq hybrid):
The RNN and CNN hybrid model [13] uses two paths -
character level and word level. For the character path, an
embedding layer feeds the input to 3 stacked CNN layers. The
word path goes through embedding and a bidirectional LSTM
(biLSTM). The two paths are merged by projecting words to
characters based on a projection matrix which is received as an
additional input. Hence, the character and word embeddings
are jointly learned. These embeddings are fed to a stack of
3 convolutional layers. The output is predicted using a time
distributed dense layer. We trained the network with a batch
size of 32. The system architecture is illustrated in Figure 6.

5) *RNN with language model: In [5] a combination of
character-level recurrent neural network based model and a
language model are applied to automatic diacritics restoration.3

The core model uses a bidirectional LSTM which deals with
previous and next letter contexts in the sequence.

The bidirectional RNN contains 2 stacked layers with
residual connections, composed of 300 LSTM units. A batch

3https://github.com/arahusky/diacritics restoration
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Fig. 5. seq2seq-CNN model architecture

size of 200 was chosen. The model language is based on
left-to-right beam search. At each time step, the output of
the biLSTM layers is reduced by a fully connected layer
to v-dimensional vectors, where v is the size of the output
vocabulary. A non-linear ReLU activation function is applied
to the reduced vectors. The final output layer uses a softmax
activation.

V. EVALUATION

All 6 system architectures were evaluated using the classifi-
cation accuracy metric, which is defined as the ratio between
the correct predictions and the total number of samples.

We computed the accuracy at three different levels: trigram,
word and character level. At trigram and word-level the ac-
curacy reflects the number of correct predictions made by the
system overall. At character-level, we computed the accuracy
only for the characters which may be written with diacritic
symbols (a, i, s, t). Accuracy results for all the systems are
presented in Table IV.



TABLE IV
NETWORK PARAMETERS AND ACCURACY RESULTS

Architecture ID Latent dimension Batch size Accuracy
3-gram level Word level Character level

seq2seq LSTM 128 512 75.50% 89.98% 71.61%
seq2seq stacked 1 LSTM 256 128 79% 93 % 78%
seq2seq stacked 2 LSTM 128 512 84% 94 % 82%
seq2seq CNN 128 1024 91% 97 % 89%
seq2seq hybrid [13] N/A 32 77% 92% 84%
seq2seq LSTM Language model [5] 300 200 84 % 96 % 90%
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Fig. 6. seq2seq-hybrid model architecture

A separate set of results is shown in Table V, where the
4 ambiguous letter sets in Romanian (a-ă-â, i-ı̂, s-ş, t-ţ) are
analyzed individually.

The highest accuracy in terms of trigrams and words, was
achieved for the convolutional network seq2seq CNN, while
the single-layer LSTM system seq2seq LSTM had the lowest
accuracy. One explanation can be found in the recurrence of

TABLE V
ACCURACY RESULTS FOR INDIVIDUAL AMBIGUOUS PAIRS OF THE BEST

PERFORMING SYSTEM

Architecture ID Accuracy
a-ă-â i-ı̂ s-ş t-ţ

seq2seq CNN 93.51 % 99.44 % 98.39 % 97.94 %

the LSTMs, which may require larger data context, as opposed
to the CNN, which uses an attention layer and sliding windows
(kernels) to simulate the recurrence.

However, at character-level, the system described in [5]
outperforms all other systems. The justification for this result
can be the use in [5] of a language model together with the
RNN, while our systems restore the diacritics without any
additional linguistic information.

VI. CONCLUSIONS AND FUTURE WORK

In this work we compared 6 neural networks architectures
for the task of automatic diacritics restoration applied to
Romanian. All the models are trained using only parallel input-
output pairs of texts with and without diacritics. As input
to the sequence-to-sequence architectures we used character-
level one-hot encodings. However, it is common practice in
NLP to encode the words or characters using multidimensional
embeddings obtained from large amounts of text data. These
embeddings would allow the network to have an initial esti-
mate of the characters’ function in a language. So as future
work, we intend to substitute the one-hot encoding with letter
or word embeddings, and also to include additional linguistic
or semantic information.

In our experiments we split the data in trigrams, both for
training and for testing. Each network receives a diacritic-
stripped trigram and predicts the entire corresponding se-
quence with diacritics. We intend to experiment with other
N-gram, allowing the network to capture more context. One
other means of improving the results is to predict the diacritics
only for the sequence-ending word, considering all previous
words to be correctly typed.

In addition, we are planning to investigate other types of
fully convolutional neural networks, based on dilated con-
volutions combined with attention mechanisms, architectures
largely used in Machine Translation and Speech Synthesis
fields, but unexplored in the ADR domain.
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