
Input Encoding for Sequence-to-Sequence Learning
of Romanian Grapheme-to-Phoneme Conversion

Adriana STAN
Communications Department

Technical University of Cluj-Napoca, Romania
adriana.stan@com.utcluj.ro

Abstract—This paper evaluates the use of sequence-to-sequence
learning models for the Romanian grapheme-to-phoneme conver-
sion. The strategies explore the use of different input feature en-
coding: one-hot letter encoding, additional embedding layer and
grapheme embeddings learned from a large corpus of Romanian
text. Additional lexical information, such as syllabification and
lexical stress is also taken into consideration for augmenting the
orthographic form of the word and providing more accurate
phonetic transcriptions.

The sequence-to-sequence models are also compared to a
baseline decision tree algorithm in terms of both phone- and
word-level accuracy. The best results are achieved by the model
which uses grapheme embeddings and all additional linguistic
information. Its accuracy is 97.90% at word-level, and 99.62%
at phone-level. However, only minor differences exist between the
tested systems.

Index Terms—phonetic transcription, Romanian, grapheme-to-
phoneme, G2P, LTS, LSTM, DNN, letter embeddings, grapheme
embeddings

I. INTRODUCTION

The latest trends in human-computer interaction using nat-
ural language or speech processing tend to limit the input
feature manipulation by the human expert in favor of a deep
learning architecture. This architecture can, at least in theory,
extract similar features on its own. For example, state-of-
the-art speech synthesis systems are now trained using only
pairs of text and audio with no segment alignments or text
processing [1], [2]. Machine translation systems can learn to
map sequences of texts in two separate languages, without the
need of an annotated correspondence between the words of
the sequences.

Even though the additional features are not required in
these particular tasks, they are still an essential part of many
other applications. For example, the lexical stress or pho-
netic transcription can discriminate between homographs in
semantic analysis. To develop algorithms which can extract
these features with high accuracy, large lexicons and datasets
are required. In this respect, Romanian is an under resourced
language [3] and does not benefit from readily available, high
quality language resources and systems. However, in recent
years more and more resources and tools have been developed
and published by the research community.

One of the most important linguistic resources for Roma-
nian was developed within the CoRoLa project [4], [5]. The
CoRoLa corpus of Romanian texts contains over 1 billion
tokens. The data is cleaned, partially annotated with expert

linguistic metadata and includes multiple text styles. The
datasets can be accessed through an online application.1

The open-source initiative of the online Romanian Explica-
tive Dictionary [6] is also a great resource for extracting word
inflections or part-of-speech tags, as well as the syllabic forms
of the words which do not follow the general syllabification
rules in Romanian.2

Scientific publications of Romanian textual resources in-
clude: Barbu et al. [7] published two Romanian dictionaries
of syllabic and inflected forms for over 500,000 Romanian
words of 65,000 different lemmas. Simionescu released an
extensive list of part-of-speech annotations for over 1,000,000
words [8].3 Domokos et al. [9] developed an extensive
grapheme-to-phoneme dictionary in SAMPA format, called
NAVIRO, and built from an initial list of 10,000 manually
transcribed words, and extended using artificial neural net-
works.4 Another freely available grapheme-to-phoneme dic-
tionary containing over 75,000 entries composed mainly of
the Romanian Scrabble’s Association’s official list of words
was introduced in [10].5

With the availability of these resources, other studies and
tools have been published, investigating either entire text
processing systems or only parts of them. The following listing
includes only those works related to the task of grapheme-to-
phoneme conversion or complete systems which contain the
phonetic conversion among other processes.

In [11] the use of neural networks for grapheme-to-phoneme
conversion in the context of text-to-speech synthesis is investi-
gated, and a 98.3% word-level accuracy is reported. A similar
approach, based on artificial neural networks, is presented in
[12] and [13]. The authors of [13] report a 92.83% accuracy
at phone-level. A set of rules for the Romanian grapheme-
to-phoneme transcription was developed in [14] and obtained
95% accuracy. Similar rule-based transcriptions combined
with decision trees are explored in [15]. The accuracy of
the method at word-level is 94.8% on one of the evaluation
subsets. The authors of [16] compare 5 separate methods based
on: decision trees, neural networks, support vector machines,

1http://corola.racai.ro/
2http://dexonline.ro
3http://nlptools.infoiasi.ro/WebPosTagger
4http://users.utcluj.ro/˜jdomokos/naviro/
5http://speech.utcluj.ro/marephor/



pronunciation by analogy and an expert system. Their best
results have an accuracy of 96.68% at word-level.

The work in [17] achieves a 93% word-level accuracy
for the Romanian grapheme-to-phoneme conversion using a
maximum entropy classifier and a custom data-driven al-
gorithm. [18] introduces a margin infused relaxed method
and a specialized algorithm for same processing task. The
reported word-level accuracy is 96.29%. The same authors
present in [19] a series of decision tree-based evaluations
for multiple Romanian and English text processing tasks,
including grapheme-to-phoneme conversion. The word-level
accuracy of the G2P module was reported at 95.05%.

A novel approach to the phonetic transcription task was
presented in [20] where grapheme-to-phoneme conversion
is performed using statistical machine translation principles
and obtains a 97.24% accuracy at word-level. The authors
of [10] use decision trees with various context lengths and
achieve a 99.61% accuracy at phone-level. The decision trees
are compared with deep learning networks in [21]. The best
algorithm obtained at most 99.63% accuracy at phone-level.

Table I summarizes these works and their reported accuracy.
However, the methods are not directly comparable as the
training datasets are not consistent across the studies. Also,
the level of the reported accuracy (i.e. phone- or word-level)
differs.

It is also worth mentioning a few papers which introduced
full text processing systems, such as [22] which addresses the
diacritic restoration, text normalization, syllabification, pho-
netic transcription and lexical stress positioning; [23] describes
a complete text-to-speech synthesis system including the front-
end text processing with syllabification, lexical stress assign-
ment and grapheme-to-phoneme conversion. [24] presents the
authors’ work on a full text processing tool for phonetic
transcription, syllabification and part-of-speech tagging.

In terms of grapheme-to-phoneme conversion for other lan-
guages, the most recent approaches make use of the complex
deep learning architectures. Studies on this topic are numerous
and include various mono- or multi-lingual tasks, as well as the
use of unsupervised representation learning for the graphemes:
[25] introduces a bidirectional long short-term memory archi-

TABLE I
RESULTS REPORTED IN THE LITERATURE FOR THE TASK OF

GRAPHEME-TO-PHONEME CONVERSION IN ROMANIAN

Paper Reference Level Accuracy

(Burileanu, 2002) [11] word 98.30%
(Ordean et al., 2009) [15] word 94.80%
(Toma et al., 2009) [14] word 95.00%
(Domokos et al., 2011) [13] phone 92.83%
(Toma et al., 2013) [16] word 96.68%
(Boroş et al.,2012) [17] word 93.00%
(Boroş et al., 2013) [18] word 96.29%
(Cucu et al., 2014) [20] word 97.24%
(Boroş et al. , 2017) [19] word 95.05%
(Toma et al., 2017) [10] phone 99.61%
(Stan et. al, 2018) [21] phone 99.63%

tecture combined with alignment-based models for translating
English words into their phonetic representations. [26] adapts
good G2P models for low-resource languages in a multilingual
framework. [27] experiments with uni- and bi-directional
LSTMs with various output delays combined with an n-
gram language model. [28] uses a multitask learning strategy
combined with n-gram language models to improve the G2P of
English and German texts. [29] learns global character vectors
from plain text resources and applies them to monolingual
and multilingual G2P conversion in a recurrent neural network
setup.

Starting from this overview, the aim of this paper is
to investigate the use of the newly developed sequence-to-
sequence deep learning models [30] applied to the Roma-
nian grapheme-to-phoneme conversion. The method evaluates
a simple encoder-decoder structure with different grapheme
input encoding and compares the results with those of a basic
decision tree algorithm.

The paper is organized as follows: Section II describes
the sequence-to-sequence algorithm and its internal network
structure. Section III introduces the datasets and evaluation
procedures, while conclusions and discussions are presented
in Section IV.

II. SEQUENCE-TO-SEQUENCE LEARNING FOR
GRAPHEME-TO-PHONEME CONVERSION

The task of grapheme-to-phoneme conversion implies vari-
able length input and output sequences, i.e. the length of the
word versus its phonetic transcription. The recently introduced
sequence-to-sequence models [30] can do just that. Their struc-
ture involves an encoder-decoder architecture. The encoder
aims to create a low-dimensional representation of the input
sequence which captures the essential information for the task
at hand. The output of the encoder is then used to condition
the decoder’s output. The decoder is trained on time-delayed
sequences, meaning that it learns to predict the next token
of the sequence. Both the encoder and decoder are neural
networks with recurrent or convolutional structures [31].

This work uses the recurrent architecture. Recurrent neural
networks (RNN) are a class of neural networks in which
connections between the nodes are made so that temporal
sequences can be accurately modeled [32]. This means that
the output at time step ti is conditioned on the state of the
network at time step ti−1 along with the current input.

However, in vanilla RNNs, sequences with long temporal
dependencies cannot be represented properly. The solution to
this problem is to use a specialized type of neural node able
to model longer temporal dependencies in the input data. One
such node is the Long Short Term Memory (LSTM) [33].
LSTMs have a more complex internal structure (see Figure 1)
which includes a series of gates designed to either allow,
partially allow or block the current information to pass to
the next time step. LSTMs have been successfully applied to
several complex tasks in NLP, such as machine translation
[30], language modeling [34] or text generation [35].

The equations describing the behavior of the LSTM are:



Fig. 1. Diagram for a one-unit Long Short-Term Memory (LSTM) [36]

ENCODER DECODER

a c a s ă <SS>

a k <SE>a s @

Fig. 2. Sequence-to-sequence model architecture. <SS> and <SE> mark
the sequence-start and sequence-end tokens, respectively.

it = σ(Wi[ht−1, xt] + bi) (1)

ft = σ(Wf [ht−1, xt] + bf ) (2)

ot = σ(Wo[ht−1, xt] + bo) (3)

ct = ftCt−1 + it tanh (Wc[ht−1, xt] + bc) (4)

ht = ot tanh(ct) (5)

where σ and tanh are the sigmoid and hyperbolic tangent
functions, respectively. xt is the input vector to the LSTM unit,
it is the input/update gate’s activation vector, ft is the forget
gate’s activation vector, and ot is the output gate’s activation
vector at time step t. W and b are the corresponding weight
matrices and bias vectors for each gate–these parameters are
learned in the training process. ct is the cell state vector at
time step t, and ht is the hidden state vector of the LSTM
unit. ht is also known as the output vector of this cell type.

Across all experiments the same sequence-to-sequence
model architecture was used. The architecture is composed of
a single layer LSTM in both the encoder and the decoder, as
shown in Figure 3. However, several input sequence encoding
strategies were evaluated: one-hot encoding, embedding layer
and grapheme embeddings. All encoding was performed at
grapheme-level.

The one-hot encoding (OHE) simply creates a 2D array
with the dimension MxN , where M is equal to the maximum
length of the input sequences, and N is equal to the number
of distinct characters available in the input sequences. Each

Encoder_input: InputLayer

Encoder_LSTM: LSTM Decoder_input: InputLayer

Decoder_LSTM: LSTM

Decoder_softmax: Dense

Fig. 3. Sequence-to-sequence network architecture

row has null elements except for one which is equal to 1. The
index i of the element equal to 1 is determined as the position
of the current input character c in the set of all possible input
characters {c1, c2, ..., ci, ..., cN}. For example, if the set of all
possible input characters is {a, b, c} and we want to encode
the sequence aababc the OHE of this sequence is:


1 0 0
1 0 0
0 1 0
1 0 0
0 1 0
0 0 1


The embedding layer (EL) is an additional neural layer

added between the encoder’s input and the LSTM. The embed-
ding layer is jointly learned with the rest of the sequence-to-
sequence model’s parameters. The task of the embedding layer
is to convert the input characters in each sequence into dense
vectors of fixed-length. The dense vectors should provide
better approximations of the input characters’ relevance to the
given learning task.

However, the training data in most NLP applications is
rather limited. Therefore, a fixed-length embedding of the
input characters could be learned from an external text re-
source, such as large amounts of raw texts. This embedding
would approximate the context in which each character from
the set can be found in a particular language. This grapheme
embedding (GE) is similar to the word embeddings [37]. The
difference is that vectors are obtained at character/letter level.
Word embeddings have proved their efficiency in a multitude
of NLP tasks [38], and grapheme embeddings were shown to
mimic the behavior of the phonetic transcription [39].



TABLE II
EXAMPLE OF INPUT-OUTPUT SEQUENCES FOR THE WORD

acasă (EN. home) USING THE ORTHOGRAPHIC FORM, ORTHOGRAPHIC
PLUS SYLLABIFICATION, ORTHOGRAPHIC PLUS LEXICAL STRESS, AND

ALL 3 COMBINED.

Type Input seq Output seq

Orthographic acasă a k a s @
Orthographic+Syllabification a-ca-să a k a s @
Orthographic+Lexical stress ac’asă a k a s @
Orthographic+Syllabification+Lexical stress a-c’a-să a k a s @

III. EVALUATION

A. Training data

To evaluate the performance of sequence-to-sequence mod-
els applied to Romanian grapheme-to-phoneme conversion, the
MaRePhor [10] phonetic dictionary was used.6 The dictionary
consists of 72,375 words and 591,570 letters. The entries are
words from the Romanian Scrabble Association’s official list
of words and the entries from a 15,517 words dictionary
developed according to the SpeechDat specifications. The
phonetic transcriptions are in SAMPA format.7

Aside from the direct grapheme-to-phoneme conversion, ad-
ditional linguistic information was added to the input data with
the aim of aiding the phonetic transcription. Syllabification
and lexical stress of the words were appended to the input
features. The syllabification of approximately 507,000 words
was extracted from the RoSyllabiDict lexicon [7]. The DEX
Online Database [6] which includes over 1,600,000 words and
their inflected forms along with the stress labels was selected
for lexical stress assignment.

Combining the common words in all 3 dictionaries a list of
62,874 words was obtained. The syllabification and lexical
stress were incorporated into the orthographic form of the
word, either individually or simultaneously. The output se-
quence was in all experiments only the phonetic transcription.
Table II shows an example of the entries. The data was
randomly split into training (80%) and testing (20%) sets. The
split was maintained across all evaluations so that there are no
differences between the systems caused by the random split
of the training and testing datasets.

The Wikipedia database dump for Romanian [40] was pro-
cessed through a word2vec model using the Gensim toolkit8 to
obtain the grapheme embeddings. The order of the embedding
was to set to 30 so that it is close to the number of letters in
the Romanian alphabet (i.e. 31 letters).

A plot of the t-SNE [41] visualizations of the grapheme
embeddings is presented in Figure 4. It can be noticed that
the vowels a, e, i, o, u are closely grouped together. The
same grouping can be found for the least frequent letters in
Romanian k, w, y, q. This means that, at least in theory, the
network can make use of better representations for its inputs.

6https://speech.utcluj.ro/marephor/
7https://www.phon.ucl.ac.uk/home/sampa/romanian.htm
8https://radimrehurek.com/gensim/

800 600 400 200 0 200 400

400

200

0

200

400

600

r

o

c

a

t
es

n

i

l p

d

î

f

m

g

â

u

b

v

x

z

j

h
w

yk

q

Fig. 4. Bidimensional t-SNE plot of the Wikipedia-based Romanian grapheme
embeddings

B. Results

The neural sequence-to-sequence architecture for the Ro-
manian grapheme-to-phoneme task, was implemented using
the Keras9 toolkit with TensorFlow backend.10 Because of the
non-sequential structure of the network, the functional API of
Keras was used. This enables us to merge the input of the
decoder with the hidden state of the encoder.

As a first step in the evaluation, we explored the hyper-
parameter setup of the network. Initial tests were carried out
for the dimension of the batch size and the latent dimension
of the LSTM layers in the encoder and decoder. The best
results were obtained using a batch size of 32 and a latent
dimension of 512 nodes. The embedding layer consists of 30
nodes so that there is a correspondence between the externally-
learned grapheme embeddings and this one. The weights of the
network were optimized using RMSprop, an algorithm similar
to Adagrad [42] which tunes the learning rate depending on an
running average of the recent gradients. The loss function was
set to categorical cross-entropy due to the multiclass output of
the decoder. The number of epochs was set to 20 for the OHE
and GE encodings. For the EL encoding, because the network
has to learn additional weights, the number of epochs was set
to 40.11.

Accuracy results of the 3 sequence-to-sequence networks
with their respective input embeddings are presented in Ta-
bles III, IV and V. The accuracy is measured at phone- and
word-level. Phone-level accuracy took into account all the
predicted phones, and not just the ones that pose problems
in Romanian (see [10]). It can be noticed that the GE input
achieves the highest accuracy scores: 99.51% at phone-level
and 97.40% at word-level when considering only the ortho-
graphic form of the word as input. If the syllabification and

9https://keras.io/
10https://www.tensorflow.org/
11Jupyter notebooks for all systems’ training flow are available here:

http://github.com/speech-utcluj/



TABLE III
ACCURACY RESULTS FOR SEQ2SEQ WITH ONE-HOT ENCODING

Accuracy [%]
Input features Phone Word

Orthographic 99.42 97.05
Orthographic+Syllabification 99.12 96.40
Orthographic+Lexical stress 99.01 95.85
Orthographic+Syllabification+Lexical stress 99.40 97.45

TABLE IV
ACCURACY RESULTS FOR SEQ2SEQ WITH WIKI-BASED GRAPHEME

EMBEDDINGS

Accuracy [%]
Input features Phone Word

Orthographic 99.51 97.40
Orthographic+Syllabification 99.30 96.40
Orthographic+Lexical stress 99.56 97.70
Orthographic+Syllabification+Lexical stress 99.62 97.90

the lexical stress are added to the input features, the accuracy
increases to 99.62% at phone-level and to 97.90% at word
level. Although there results are not directly comparable to the
ones presented in Table I due to the different training sets. It is,
however, safe to state that the sequence-to-sequence method
achieves similar accuracies as the state-of-the-art, if not higher.

However, the difference between the GE and OHE embed-
dings are not statistically significant. This can be explained
by the simple letter-to-sound rules in Romanian which can be
easily learned by this complex structure alone. It might be
the case that for languages where the grapheme-to-phoneme
conversion poses more complex problems, this difference
could increase. The EL has slightly lower accuracy values,
despite using twice the number of training epochs. This result
can be explained by the fact that the EL might need more
training data for the additional weights of the network. It is
also interesting to note the fact that the syllabification and
the lexical stress do not add that much value to the output
accuracy. And also that the syllabification alone can reduce it.
Again, it might be valuable to apply the same strategy to a
more complex G2P language, as the Romanian results might
already be plateaued.

As baseline, a simple decision tree classifier was also
evaluated. The input to the decision tree is a window of
graphemes centered around the predicted grapheme. Results
for this algorithm are presented in Table VI for phone- and
word-level accuracies, and with the addition of the linguistic
information, i.e. syllabification and lexical stress. The feature
encoding for the decision tree follows the steps described
in [21]. Results show that even with this simple algorithm,
the G2P task for Romanian can be solved with rather high
accuracy.

IV. CONCLUSIONS

This paper evaluated the use of sequence-to-sequence learn-
ing strategies for Romanian grapheme-to-phoneme conversion.

TABLE V
ACCURACY RESULTS FOR SEQ2SEQ WITH EMBEDDING LAYER

Accuracy [%]
Input features Phone Word

Orthographic 98.75 95.40
Orthographic+Syllabification 98.42 95.26
Orthographic+Lexical stress 99.01 96.00
Orthographic+Syllabification+Lexical stress 99.15 96.25

TABLE VI
ACCURACY RESULTS OF THE DECISION TREE CLASSIFIER FOR A

WINDOW LENGTH OF 5 CHARACTERS

Accuracy [%]
Input features Phone Word

Orthographic 99.54 96.71
Orthographic+Syllabification 99.52 96.68
Orthographic+Lexical stress 99.56 96.95
Orthographic+Syllabification+Lexical stress 99.60 97.17

The strategies involved the use of various input feature en-
codings, such as one-hot encoding, an additional embedding
layer, or grapheme embeddings learned from an external
text resource. The evaluation also included an analysis of
combining the orthographic form of the words with their
syllabification, lexical stress or both. The results of the systems
were compared in terms of phone- and word-level accuracy
scores. A decision tree algorithm trained to predict each phone
individually from a character window sequence was included
as baseline. The best results were obtained with the grapheme
embeddings and all additional linguistic information, and
achieve a phone-level accuracy of 99.62% and word-level
accuracy of 97.90%. However, the difference between all the
setups is not significant, and means that the sequence-to-
sequence strategy is sufficient for the G2P task in Romanian.

One problem noticed in the sequence-to-sequence model
prediction is that, because the decoder is conditioned only on
the hidden state of the encoder, and that it only learns to predict
the next phoneme in the output sequence, sometimes the order
of the output phonemes is scrambled. One way to overcome
this issue would be to condition the decoder on the current
input grapheme as well, or to extend the available training
data.

As future work, other network architectures could be consid-
ered. But it would also be interesting to test the simultaneous
prediction of the phonetic transcription, syllabification and
lexical stress assignment.

ACKNOWLEDGMENT

This work was supported by a grant of the Romanian
Ministry of Research and Innovation, PCCDI – UEFISCDI,
project number PN-III-P1-1.2-PCCDI-2017-0818/73, within
PNCDI III.

REFERENCES

[1] Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly,
Z. Yang, Y. Xiao, Z. Chen, S. Bengio, Q. Le, Y. Agiomyrgiannakis,
R. Clark, and R. A. Saurous, “Tacotron: Towards End-to-End Speech
Synthesis,” in Proc. Interspeech, 2017.



[2] W. Ping, K. Peng, A. Gibiansky, S. Ö. Arik, A. Kannan, S. Narang,
J. Raiman, and J. Miller, “Deep Voice 3: 2000-Speaker Neural Text-to-
Speech,” CoRR, vol. abs/1710.07654, 2017.

[3] D. Trandabat, E. Irimia, V. Barbu-Mititielu, D. Cristea, and D. Tufis,
“The Romanian Language in the Digital Era,” Springer, Metanet White
Paper Series, 2012.

[4] V. B. Mititelu, E. Irimia, and D. Tufis, “CoRoLa:The Reference Corpus
of Contemporary Romanian Language,” in LREC, 2014, pp. 1235–1239.

[5] D. Tufis, , V. B. Mititelu, E. Irimia, S, . D. Dumitrescu, and T. Boros, ,
“The IPR-cleared corpus of contemporary written and spoken Romanian
language,” in Proceedings of the Tenth International Conference on
Language Resources and Evaluation (LREC 2016). Portorož, Slovenia:
European Language Resources Association (ELRA), May 2016, pp.
2516–2521.

[6] The Romanian Explicative Dictionary (DEX) online. [Online].
Available: www.dexonline.ro

[7] A.-M. Barbu, “Romanian lexical data bases: Inflected and syllabic
forms dictionaries.” in Proceedings of the International Conference on
Language Resources and Evaluation, 01 2008.

[8] R. Simionescu, “Graphical grammar studio as a constraint grammar
solution for part of speech tagging,” in The Conference on Linguistic
Resources and Instruments for Romanian Language Processing, vol.
152, 2011.

[9] J. Domokos, O. Buza, and G. Toderean, “100k+ words, machine-
readable, pronunciation dictionary for the romanian language,” 2012
Proceedings of the 20th European Signal Processing Conference (EU-
SIPCO), pp. 320–324, 2012.

[10] S.-A. Toma, A. Stan, M.-L. Pura, and T. Barsan, “MaRePhoR - An
Open Access Machine-Readable Phonetic Dictionary for Romanian,” in
Proceedings of the 9th Conference on Speech Technology and Human-
Computer Dialogue (SpeD), Bucharest, Romania, July, 6-9 2017.

[11] D. Burileanu, “Basic Research and Implementation Decisions for a
Text-to-speech Synthesis System in Romanian,” International Journal
of Speech Technology, no. 5, pp. 211–225, 2002.

[12] D. Jitca, H. Teodorescu, V. Apopei, and F. Grigoras, “An ANN-based
method to improve the phonetic transcription and prosody modules of
a TTS system for the Romanian language,” 01 2003.

[13] D. József, B. Ovidiu, and T. Gavril, “Automated grapheme-to-phoneme
conversion system for Romanian,” in 2011 6th Conference on Speech
Technology and Human-Computer Dialogue (SpeD), May 2011, pp. 1–6.

[14] T. Stefan-Adrian and M. Doru-Petru, “Rule-Based Automatic Phonetic
Transcription for the Romanian Language,” in 2009 Computation World:
Future Computing, Service Computation, Cognitive, Adaptive, Content,
Patterns, Nov 2009, pp. 682–686.

[15] M. A. Ordean, A. Saupe, M. Ordean, M. Duma, and G. C. Silaghi,
“Enhanced Rule-Based Phonetic Transcription for the Romanian Lan-
guage,” in 2009 11th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, Sep. 2009, pp. 401–406.

[16] Ş. Toma, T. Birsan, F. Totir, and E. Oancea, “On letter to sound
conversion for Romanian: A comparison of five algorithms,” in 2013
7th Conference on Speech Technology and Human - Computer Dialogue
(SpeD), Oct 2013, pp. 1–6.

[17] T. Boros, D. Stefanescu, and R. Ion, “Bermuda, a data-driven tool for
phonetic transcription of words,” in Natural Language Processing for
Improving Textual Accessibility (NLP4ITA) Workshop, 2012.

[18] T. Boros, , “A unified lexical processing framework based on the margin
infused relaxed algorithm. a case study on the Romanian language,” in
Proceedings of the International Conference Recent Advances in Natural
Language Processing RANLP 2013. Hissar, Bulgaria: INCOMA Ltd.
Shoumen, BULGARIA, Sep. 2013, pp. 91–97.

[19] T. Boros, S. D. Dumitrescu, and S. Pipa, “Fast and accurate decision
trees for natural language processing tasks,” in RANLP, 2017.

[20] H. Cucu, A. Buzo, L. Besacier, and C. Burileanu, “SMT-based ASR
domain adaptation methods for under-resourced languages: Application
to Romanian,” Speech Communication, vol. 56, pp. 195 – 212, 2014.

[21] A. Stan and M. Giurgiu, “A Comparison Between Traditional Machine
Learning Approaches And Deep Neural Networks For Text Processing
In Romanian,” in Proceedings of the 13th International Conference
on Linguistic Resources and Tools for Processing Romanian Language
(ConsILR), Jassy, Romania, November, 22-23 2018.

[22] C. Ungurean and D. Burileanu, “An advanced NLP framework for high-
quality Text-to-Speech synthesis,” in 2011 6th Conference on Speech
Technology and Human-Computer Dialogue (SpeD), May 2011, pp. 1–
6.

[23] A. Stan, J. Yamagishi, S. King, and M. Aylett, “The Romanian speech
synthesis (RSS) corpus: Building a high quality HMM-based speech
synthesis system using a high sampling rate,” Speech Communication,
vol. 53, no. 3, pp. 442–450, 2011.

[24] T. Boros, S. D. Dumitrescu, and V. Pais, “Tools and resources for
Romanian text-to-speech and speech-to-text applications,” CoRR, vol.
abs/1802.05583, 2018.

[25] K. Yao and G. Zweig, “Sequence-to-sequence neural net models for
grapheme-to-phoneme conversion,” CoRR, vol. abs/1506.00196, 2015.

[26] B. Peters, J. Dehdari, and J. van Genabith, “Massively multilingual
neural grapheme-to-phoneme conversion,” CoRR, vol. abs/1708.01464,
2017.

[27] K. Rao, F. Peng, H. Sak, and F. Beaufays, “Grapheme-to-phoneme
conversion using long short-term memory recurrent neural networks,” in
2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), April 2015, pp. 4225–4229.

[28] B. Milde, C. Schmidt, and J. Kohler, “Multitask sequence-to-sequence
models for grapheme-to-phoneme conversion,” in Proc. Interspeech
2017, 2017, pp. 2536–2540.

[29] J. Ni, Y. Shiga, and H. Kawai, “Multilingual grapheme-to-phoneme
conversion with global character vectors,” in Proc. Interspeech 2018,
2018, pp. 2823–2827.

[30] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, 2014, pp. 3104–3112.

[31] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin, “Con-
volutional sequence to sequence learning,” CoRR, vol. abs/1705.03122,
2017.

[32] Z. C. Lipton, “A critical review of recurrent neural networks for sequence
learning,” CoRR, vol. abs/1506.00019, 2015.

[33] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, pp. 1735–80, 12 1997.

[34] C. Chelba, M. Norouzi, and S. Bengio, “N-gram language modeling
using recurrent neural network estimation,” Google, Tech. Rep., 2017.

[35] Z. Xie, “Neural text generation: A practical guide,” CoRR, vol.
abs/1711.09534, 2017.

[36] F. Deloche. Diagram for a one-unit Long Short-Term
Memory (LSTM) - Wikimedia Commons. [Online]. Available:
https://upload.wikimedia.org/wikipedia/commons/6/63/Long Short-
Term Memory.svg

[37] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in Neural Information Processing Systems 26,
C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q.
Weinberger, Eds. Curran Associates, Inc., 2013, pp. 3111–3119.

[38] R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu,
“Exploring the limits of language modeling,” 2016.

[39] O. Watts, “Unsupervised learning for text-to-speech synthesis,” Ph.D.
dissertation, University of Edinburgh, 2012.

[40] “Linguatools–Romanian Wikipedia database dump,”
https://linguatools.org/tools/corpora/wikipedia-monolingual-corpora/.

[41] L. van der Maaten and G. E. Hinton, “Visualizing High-Dimensional
Data Using t-SNE,” Journal of Machine Learning Research, vol. 9, pp.
2579–2605, 2008.

[42] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” J. Mach. Learn. Res.,
vol. 12, pp. 2121–2159, Jul. 2011.


