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Abstract—Recently, deep neural network (DNN) based speech
synthesis achieved close to human speech quality and became
the state-of-the art in the field of text-to-speech (TTS) synthesis
systems. However, a major part of its efficiency comes from the
use of large quantity of high-quality speech recordings. When
this data is not available, other approaches are still preferred.

This paper evaluates the DNN-based postfiltering of the
synthesised speech as a means to increase the quality of DNN-
based TTS systems trained on very limited speech resources. 20
different systems are compared objectively using the Mel Cepstral
Distortion measure. The systems differ in terms of: training data,
network architecture, and training method. Out of the 20 initial
systems, 7 are evaluated subjectively in listening tests performed
for two different speakers. Results show that even when starting
from as little as 5 minutes of speech recordings, the postfiltering
process improves the quality of the synthetic speech output. So
it can, therefore, be used as a training strategy for TTS systems
where sufficient high-quality data is not available.
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neural networks; postfiltering; text-to-speech synthesis; Roma-
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I. INTRODUCTION

Recently, Tacotron 2 [1] a text-to-speech (TTS) synthesis
system based on deep neural networks (DNN), obtained a
Mean Opinion Score (MOS) rating equal to 4.53. This rating
is very similar to the MOS score for natural speech (4.58 as
reported by the authors of [1]). This result, in conjunction
with multiple other studies of DNN-based speech synthesis
[2, 3, 4, 5, 6, 7, 8, 9], made this approach the new state-of-
the-art paradigm for TTS systems. However, all these systems
require large amounts of high quality speech recordings for
training–over 20 hours of data from a single speaker for most
of the previously cited works. So there is still the issue of
obtaining good TTS systems for languages or speakers where
data is limited. In this case, there are several approaches, such
as that of Lee et al. [10] which grades and filters the available
data to maximize the quality of the output. Another interesting
study for this scenario is that of Sone et al. [11], which
uses a deep relational model to estimate a neural network’s
parameters from the joint distribution of acoustic and linguistic
features.

Yet the most common approach is to fine-tune or adapt
a pre-trained model’s parameters using data from the tar-
get speaker or language [12, 13, 14]. Or to append
speaker/language embeddings to the linguistic/acoustic fea-

tures, so that the model can jointly learn common and dis-
criminative features from the training set [6, 13, 15, 16, 17].

Although not aimed at solving the data limitation problem,
the postfilter presented in [18] could be an alternative solution.
This postfilter is trained to map the synthetic speech generated
by a Hidden Markov Model (HMM) based system into natural
samples by using two DNNs, one operating in the Mel cepstral
domain, and the other in the spectral domain. Other studies
related to this topic are those of Coto-Jimenez and Close [19]
and Muthukumar and Black [20]. Coto-Jimenez and Close
append a deep neural network with long-short term memory
cells as a postfiltering step for HMM-based speech synthesis.
Muthukumar and Black also use a recurrent neural network to
enhance the output of the Clustergen statistical-parametric syn-
thesiser. [21] presents a speaker-adaptive postfiltering method
for statistical parametric speech synthesis using pre-trained
models adapted with limited data to new speakers. A postfilter
implemented with Generative Adversarial Network (GAN) is
proposed by [22] that is used to learn how to discriminate
between synthesised and natural speech. If multi-speaker pre-
trained models are available, with few shot methods good
quality speech can be obtained for the newly added speaker
[23, 24]. To the best of our knowledge, there are no meth-
ods which postfilter the DNN-based speech synthesis output
without adapting existing models to newly added speakers.

Starting from this overview, we address the problem of
developing DNN-based speech synthesis systems with limited
speech data by employing a post-synthesis neural network
trained to learn the mapping between the synthesised acoustic
features and the natural speech features. The method builds
upon previously published studies, and focuses on an ex-
tensive evaluation of several training strategies and network
architectures. 20 different systems are trained and analysed
objectively. Out of the 20 systems, 7 were selected for a
subjective listening test incorporating two different voices.
Both the objective and subjective results illustrate that the
postfiltering method can be successfully applied for building
TTS systems when large quantities of data are not readily
available.

II. POSTFLLTERING SETUP

The scope of our study is to determine a DNN-based
postfiltering method for the DNN-based synthesis, such that
the final speech output of the system is enhanced even when



Fig. 1. The postfiltering process.

only limited training data is available. Thus, we employed a
two-step procedure: first, a DNN-based TTS system is trained
with various amounts of data; and second, the output of the
synthesis system is used as input for a postfiltering neural
network. An overview of the process is shown in Figure 1.

In DNN-based TTS systems the general trend, nowadays,
is to use end-to-end architectures which learn to map raw
text-sequences into acoustic representations or waveforms [9].
However, although this training scheme yields very high qual-
ity speech output, it is not well suited for the case of limited
training data, or real-time synthesis. Therefore, in this study,
the synthetic voices are built using the statistical parametric
approach. The text is first converted into a set of discrete
lexical features, including phonetic transcription, lexical stress
assignment, syllabification and part-of-speech tagging, as well
as a set of contextual features, such as left and right phonemes,
number of syllables and words in a sentence, etc. The complete
list of lexical features is based on the common HTS label
format [25]. The lexical features are then paired at frame-level
to an acoustic parametrization. Phone-level time alignments
between text and speech are required, and can be obtained
with forced alignment procedures [26].

For the postfiltering step, the entire training dataset prompts
are synthesised with the respective TTS system, and the output
features are retained. Dynamic Time Warping (DTW) [27] is
then applied to align the synthetic and natural feature vectors.
The resulting aligned pairs of acoustic features represent the
input data for the training of the postfiltering network.

III. EVALUATION

A. Data

The training data consists of the RND1 subset of the
SWARA Romanian speech corpus [28].1 Out of the 17 speak-
ers, we chose 8 female ones: BAS, CAU, EME, DCS, DDM,
HTM, PMM and SAM. As the corpus data does not contain
purposely built test sets, two other female speakers: BEA and
MAR were additionally recorded and added to the training set.
The prompts were the same as for SWARA speakers, and the
recordings took place in similar studio conditions. None of the
speakers in the combined dataset are professional speakers.

The data is sampled at 48kHz with 16bps, and it was
manually segmented at utterance-level. Phoneme state-level
alignments were obtained from an iteratively trained HMM-
based forced aligner, similar to the first step from the ALISA
tool [26]. The aligner used 100 utterances from each speaker.
No evaluation of the alignment accuracy was carried out.

1Available online: speech.utcluj.ro/swarasc/

B. Synthesis systems

The DNN-based TTS systems followed the Blizzard Chal-
lenge 2017 Merlin baseline system setup [29, 30]. Linguistic
features were derived with an updated version of the Romanian
TTS front-end described in [31].2 Acoustic features were
extracted with the WORLD vocoder [32], and comprised 59
plus the 0th Mel generalised coefficients, 5 band aperiodicity
coefficients and a fundamental frequency (F0). The acoustic
features were augmented with their delta and delta-delta val-
ues. The network architecture consists of 6 layers with 1024
nodes each. The system is trained using the tanh activation
function and the stochastic gradient descent optimizer. A
separate network with similar architecture is trained to predict
the duration of the phoneme states. The postfiltering uses the
same set of acoustic features extracted with WORLD, and a
baseline network architecture as the one described in [33].

For the evaluation to provide a correct overview over the
effectiveness of the postfiltering, we trained 20 different syn-
thesis systems using the BEA data. The systems use different
training strategies, quantities of training data, and types of
postfiltering network architectures. Their details are presented
next.

The training strategy analyses: simple DNN-based TTS
systems trained on linguistic-to-acoustic pairs of features
(ID:M);3 TTS system plus DNN postfiltering trained on
synthesised-to-natural acoustic feature pairs (ID:M* PF);4

and DNN speaker adaptation, where an initial eigen voice is
trained from the data of all the speakers, and then the network
weights are fine tuned for a target speaker (ID:SPKA).

The amount of training data for the TTS system was set
to: 50 utterances (approx. 5 minutes), 100 utterances (approx.
10 minutes), and 500 utterances (approx. 50 minutes). In the
postfiltering step we also selected 50, 100 or 500 utterances.
The postfiltering utterances were the same as those used
to train the correspondent TTS system. The utterances are
random newspaper sentences, and they are not phonetically or
acoustically balanced or filtered. To overcome the lack of data,
we also used an artificial data enhancement method, in which
the original speech samples were added twice to the training
set, thus doubling the training data (ID:Db). This method was
applied either for just the postfiltering network, or for both the
TTS system and the postfiltering (ID:M*Db P*Db).

In this study, for the postfiltering, only a feed-forward
network architecture was considered. However, the number
of layers (4, 5 and 6), the activation function (tanh and
ReLU ), and the number of neurons per layer (256, 1024, and
layer halving or bottleneck: 1025-512-256-512-1024) were
examined.

For speaker adaptation, different volumes of data from each
speaker were used to train the eigen voice (ID:SPKA* E*):
100 utterances which translates into 1000 total utterances for
training, and 500 utterances from each speaker, 5000 in total.

2Online demo: www.romaniantts.com
3The ID refers to the system ID used in Table I.
4The asterisk (‘*’) marks a variable value.



The network’s adaptation was then performed with either 100
or 500 utterances from the target speaker. For postfiltering
a network trained on the same 100 utterances from each
of the 10 speakers (ID:*MSPK) was evaluated. This system
is similar to the speaker adaptation strategy, in the sense
that the network is trained on multi-speaker data. However,
no aposteriori weight tuning was performed, and no speaker
embeddings were used as features.

Table I summarises the systems’ description and the
IDs selected for the objective and the subjective evalua-
tions.5 Audio samples from all the systems are available at:
speech.utcluj.ro/pf_is2020/.

C. Listening test setup

Although many studies have been conducted on the objec-
tive analysis of the synthesised speech quality [34], there are
still no measures which truly correlate to the perceptual eval-
uation of the synthesised speech. Hence, subjective listening
tests are required. In this evaluation, as the number of initial
systems is quite large for a listening test, the 7 most relevant
systems were selected and tested with two different voices.
The systems and their listening test identifiers are shown in
Table I.

The lower bound of our setup is M050 (A)–the TTS system
trained on 50 utterances (approx. 5 mins). The upper bounds
are M500 (G) trained on 500 utterances (approx. 50 mins)
and the natural (H) samples. System M100 (B) is our baseline
for the postfiltering process. Out of the various postfilter
network architectures, the 6 tanh layers of 1024 nodes
each (M100 PF100 6TANH1024) exhibited the best objective
score for both speakers (see Section IV), and they were
included for the evaluation of the postfiltering effect alone
(C). Artificially doubling the data in both voice training and
postfiltering also showed an increase of the objective score, so
that system (M100Db PF100Db) was selected, as well. As the
multi-speaker network could be viewed as an eigen postfilter,
systems M100 PF MSPK and SPKA100 E100 were included
for the multi-speaker setup comparison.

The listening test comprised 4 sections: a) Naturalness–
evaluated using a Mean Opinion Score (MOS) scale consisting
of 5 points [1-Unnatural, 5-Natural]; b) Speaker similarity–
evaluated on a 5-point MOS scale [1-Not similar at all, 5-Very
similar]; c) Intelligibility–evaluated using a Word Error Rate
(WER) measure; and d) ABX naturalness–each system was
randomly paired with all other systems and listeners had to
mark which sample sounds more natural.

IV. RESULTS

A. Objective measures

The systems’ performance is objectively measured with Mel
Cepstral Distortion (MCD) [35]. Because the accuracy of the
state-level alignment is unknown, the MCD value was obtained
over the best path in DTW, and it does not take into account

5Different IDs are used in the objective evaluation as it is easier to follow
the multiple setups.
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Fig. 2. Average Mel Cepstral Distortion for the (a) BEA and (b) MAR
systems. Horizontal bars represent the mean MCD values, and are overlapped
with boxplots.

the 0th coefficient. 50 utterances not contained in the training
dataset were synthesised and used to compute the average
MCD for speakers BEA and MAR. MAR speaker’s distortion
included only the listening test systems. Figure 2 shows these
results.

As expected, out of the baseline TTS systems, M500 per-
formed the best and M050 the worst. M100’s scores are quite
low, but artificially doubling the data increases the quality
of the synthesis (M050Db, M100Db). The postfiltering also
decreases the cepstral distortion relative to the correspon-
dent TTS (M050 PF050, M100 PF100, M100Db PF100Db,
M500 PF500). The average decrease in MCD is 5%, with
a maximum of 7.5% for M500 PF500. Postfiltering plus
data doubling has the most effect (M050Db PF050Db,
M100Db PF100Db), with a 10% decrease in MCD for
M100Db PF100Db. Doubling the data for the postfiltering
alone (M100 PF100Db) only marginally decreases the MCD.
With respect to the postfilter network architecture, the 6 tanh
layers with 1024 nodes per layer (M100 PF100 6TANH1024)
had the best performance. All other network architectures
have higher MCD scores, yet not significantly higher. When



TABLE I
SYNTHESIS SYSTEMS’ DESCRIPTION

No. System ID Listening test No. utts No. utts Postfiltering architectureID voice training postfiltering
1 NAT H Natural N/A N/A
2 M050 A 50 N/A N/A
3 M050Db - 50x2 N/A N/A
4 M100 B 100 N/A N/A
5 M100Db - 100x2 N/A N/A
6 M500 G 500 N/A N/A
7 M050 PF050 - 50 50 6 TANH x 1024
8 M050Db PF050Db - 50x2 50x2 6 TANH x 1024
9 M100 PF100 4TANH256 - 100 100 4 TANH x 256

10 M100 PF100 5TANHBTLNK - 100 100 5 TANH (1024-512-256-512-1024)
11 M100 PF100 6TANH1024 C 100 100 6 TANH x 1024
12 M100 PF100 4RELU256 - 100 100 4 RELU x 256
13 M100 PF100 5RELUBTLNK - 100 100 5 RELU (1024-512-256-512-1024)
14 M100 PF100 6RELU1024 - 100 100 6 RELU x 1024
15 M100 PF MSPK E 100 10x100 Multi-speaker 6 TANH x 1024
16 M100Db PF100Db D 100x2 100x2 6 TANH x 1024
17 M100 PF100Db - 100 100x2 6 TANH x 1024
18 M500 PF500 - 500 500 6 TANH x 1024

No. utts for eigen voice No. utts for target speaker
19 SPKA100 E100 F 10x100 100
20 SPKA100 E500 - 10x500 100
21 SPKA500 E500 - 10x500 500

multiple speakers are available, speaker adaptation is in-
deed a solution: systems SPKA100 E100, SPKA100 E100,
SPKA E500 have some of the lowest MCD scores. However,
the multi-speaker postfilter (M100 PF MSPK) is comparable
only to the speaker-dependent filter.

B. Listening tests

The 7 selected systems, along with natural speech samples
were included in two separate listening tests: one for speaker
BEA, and one for speaker MAR. Each voice was evaluated by
20 native Romanian listeners. A couple of listeners misread
the MOS scale, and their results were discarded.

Figure 3 shows the results. The best performing system
(G) is considered the baseline synthesis system as it uses the
most amount of data (approx. 50 minutes). The other systems
analysed are of higher interest in the evaluation as they use
approximately 10 minutes or less data. It can be observed that
the naturalness and the speaker similarity are improved by
the postfiltering (C) for both speakers. Artificially doubling
the data (D) enhances the output speech’s naturalness, but not
the speaker similarity. However, the intelligibility is affected
by the postfiltering in all setups, and slightly improved by the
data doubling. The multi-speaker postfiltering network (E) has
similar effects as the speaker dependent postfiltering in terms
of naturalness. But it is interesting to notice that when it comes
to the speaker similarity section, the network trained with
multi-speaker data performs better than the speaker dependent
one. In the ABX section, the preference over each systems is
incremental, with a minor exception for MAR’s system D.

C. Discussions

Both the objective and the subjective results showed that
postfiltering and artificial data doubling have beneficial effects
over the quality of the synthesised output, and can be jointly
used in scenarios where the training speech data is insufficient.

The effect of the postfilter can be interpreted as a result of the
fact that as opposed to the TTS network, it only needs to
learn a mapping of vectors which are sampled from similar
feature spaces. So it actually learns where the TTS system
failed with respect to the natural sample, and not to the lexical
input. Artificially doubling the data is useful especially in the
DNN setup. Here, the training is done at batch-level, and
a global overview of the entire dataset is not available to
the learning mechanism at each step. As the batches are not
selected sequentially, having more samples to learn from can
improve the output. Similar to the data doubling, the high
sampling frequency (48kHz) also provides more data points.
This was also useful for HMM-based synthesis [31]. The
fact that the eigen-postfilter was rated higher in the speaker
similarity test, could be a result of a better modelling of the
speech characteristics in general, and not of the target speaker
in particular.

By listening to the samples, there are some interesting ob-
servations to be made. Many of the voiced/unvoiced decision
errors of the TTS system were corrected by the postfilter.
Also, the buzziness of the TTS speech is noticeably reduced.
However, the postfilter makes the speech more metallic-
sounding, and it could translate into the drop in intelligibility.
The decrease of intelligibility is not at all desired, especially
in the case of limited training data, and it is already the focus
of our next studies.

V. CONCLUSIONS

This paper described an evaluation of a DNN-based post-
filtering method for DNN generated speech using limited
resources. The postfilter is trained on pairs of synthetic-to-
natural acoustic features, and used to enhance the output of
DNN-based TTS system trained on the same data. Starting
from as little as 10 minutes of speech from one speaker,
this processing chain improves the output synthetic speech as
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Fig. 3. Listening test results for speakers BEA and MAR: (a) Naturalness
MOS scores, (b) Speaker similarity MOS scores, (c) Intelligibility WER,
and (d) ABX preference. In (a) and (b) is fedbars represent the mean value
with boxplots overlapped. In (c) bars represent the average WER. In (d) the
horizontal bars represent the preference for one system against all others, no
preference, or preference for any of the other systems.

evaluated objectively with MCD, and subjectively in listening
tests. A downside of this process at this point is the drop
in intelligibility, which can be caused by the metallic speech
characteristic introduced by the postfilter, and it needs to be
investigated further.

For future work, we still need to study other network
topologies, as well using other vocoders, or adding additional
features to the postfilter, such as lexical or speaker embed-
dings. In the multi-speaker postfilter, we also need to analyse
the weight tuning for the target speaker. Using the correct
state-level alignments also needs to be considered. This is
important for a direct mapping of synthetic-to-natural features.

Also, male speaker voices were not evaluated, and might
exhibit a different behaviour.

ACKNOWLEDGMENTS

This work was funded through a grant from the Roma-
nian Ministry of Research and Innovation, PCCDI – UEFIS-
CDI, project number PN-III-P1-1.2-PCCDI-2017-0818/73. We
would also like to thank our listening test volunteers.

REFERENCES

[1] J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly,
Z. Yang, Z. Chen, Y. Zhang, Y. Wang, R. J. Skerry-Ryan,
R. A. Saurous, Y. Agiomyrgiannakis, and Y. Wu, “Natural
TTS synthesis by conditioning wavenet on mel spectrogram
predictions,” CoRR, vol. abs/1712.05884, 2017. [Online]. Available:
http://arxiv.org/abs/1712.05884

[2] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu,
“WaveNet: A Generative Model for Raw Audio,” in arXiv, 2016.
[Online]. Available: https://arxiv.org/abs/1609.03499

[3] A. van den Oord, Y. Li, I. Babuschkin, K. Simonyan, O. Vinyals,
K. Kavukcuoglu, G. van den Driessche, E. Lockhart, L. C. C. Rus,
F. Stimberg, N. Casagrande, D. Grewe, S. Noury, S. Dieleman,
E. Elsen, N. Kalchbrenner, H. Zen, A. Graves, H. King, T. Walters,
D. Belov, and D. Hassabis, “Parallel WaveNet: Fast High-Fidelity
Speech Synthesis,” Google Deepmind, Tech. Rep., 2017. [Online].
Available: https://arxiv.org/abs/1711.10433

[4] Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly,
Z. Yang, Y. Xiao, Z. Chen, S. Bengio, Q. Le, Y. Agiomyrgiannakis,
R. Clark, and R. A. Saurous, “Tacotron: Towards End-to-End
Speech Synthesis,” in Proc. Interspeech, 2017. [Online]. Available:
https://arxiv.org/abs/1703.10135
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[6] S. Ö. Arik, G. F. Diamos, A. Gibiansky, J. Miller, K. Peng, W. Ping,
J. Raiman, and Y. Zhou, “Deep Voice 2: Multi-Speaker Neural
Text-to-Speech,” CoRR, vol. abs/1705.08947, 2017. [Online]. Available:
http://arxiv.org/abs/1705.08947

[7] W. Ping, K. Peng, A. Gibiansky, S. Ö. Arik, A. Kannan, S. Narang,
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