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Abstract

Deep learning enables the development of efficient end-to-end
speech processing applications while bypassing the need for
expert linguistic and signal processing features. Yet, recent
studies show that good quality speech resources and phonetic
transcription of the training data can enhance the results of
these applications. In this paper, the RECOApy tool is in-
troduced. RECOApy streamlines the steps of data recording
and pre-processing required in end-to-end speech-based ap-
plications. The tool implements an easy-to-use interface for
prompted speech recording, spectrogram and waveform analy-
sis, utterance-level normalisation and silence trimming, as well
grapheme-to-phoneme conversion of the prompts in eight lan-
guages: Czech, English, French, German, Italian, Polish, Ro-
manian and Spanish.

The grapheme-to-phoneme (G2P) converters are deep neu-

ral network (DNN) based architectures trained on lexicons ex-
tracted from the Wiktionary online collaborative resource. With
the different degree of orthographic transparency, as well as
the varying amount of phonetic entries across the languages,
the DNN’s hyperparameters are optimised with an evolution
strategy. The phoneme and word error rates of the resulting
G2P converters are presented and discussed. The tool, the pro-
cessed phonetic lexicons and trained G2P models are made
freely available.
Index Terms: speech recording tool, multilingual, pho-
netic transcription, grapheme-to-phoneme, evolution strategy,
sequence-to-sequence, convolutional networks, transformer
networks.

1. Introduction

Nowadays, in the development of deep neural networks (DNN)
based speech processing applications, most of the signal prepro-
cessing, feature extraction and linguistic annotations are part of
the inherent neural learning. This means that systems for au-
tomatic speech recognition (ASR) and text-to-speech synthesis
(TTS) can be easily trained using only pairs of audio and ortho-
graphic transcript [1, 2, 3]. A major advantage of this approach
is that training data can be easily and readily found, and that
there is no language dependency in the development stage—
other than the language specific speech resources. Although this
approach yields satisfactory results for most end-user applica-
tions, when it comes to high quality systems, found speech data
and orthographic input does not suffice [4]. Most of the high-
end commercial applications still make use of large amounts of
studio recordings and elaborate text processing modules [2, 5].

Hence, there is still a need for tools which can facilitate the
development of domain or speaker specific training data, as well
as tools which can generate expert linguistic features in a variety
of languages. In this context, the first version of the RECOApy

tool is introduced. RECOApy was designed with the main pur-
pose of enabling end-users to record their own data and prepare
it for end-to-end speech processing applications. It provides an
easy to use interface for prompted speech recoding which in-
cludes several monitoring and data processing options (see Sec-
tion 2), as well as a set of highly accurate pre-trained neural
network models able to phonetically transcribe the prompts in
eight languages.

The task of building grapheme-to-phoneme converters is
not novel, but depending on a language’s orthographic trans-
parency and onset entropy [6], G2P can be solved using simple
rule-based systems (e.g. Finnish) or can pose serious problems
even for the most advanced deep learning algorithms (e.g. En-
glish). The modern G2P converters aim at solving the prob-
lem of phonetic transcription in multiple languages at once.
But phonetic lexicons are not readily available in most lan-
guages, and researchers are now investigating the use of collab-
orative online resources, such as Wiktionary,' as an alternative.
[7] does just this by extracting the phonetic transcriptions in
six languages from Wiktionary and validates them over manu-
ally crafted lexicons. The authors of [8] also use several online
repositories to train and adapt the models from high-resource
languages to related low-resource languages. Multilingual G2P
was also addressed by changing the grapheme representation:
[9] proposes a model which uses byte-level input representa-
tion to accommodate different grapheme systems, along with
an attention-based Transformer architecture. Ancillary audio
data was also used to learn a more optimal intermediate repre-
sentation of source graphemes in a multi-task training process
for multilingual G2P [10].

As the grapheme-to-phoneme task is inherently a sequence
to sequence (seg2seq) mapping problem, the G2P converter in
RECOADpy uses this type of learning architecture. Similar ap-
proaches were introduced in [11]. The authors map the entire
input grapheme sequence to a vector, and then use a recurrent
neural network to generate the output sequence conditioned on
the encoding vector. [12] describes a G2P model based on a uni-
directional LSTM with different output delays and deep bidirec-
tional LSTM with a connectionist temporal classification layer.
Milde er al. [13] investigate how multitask learning can im-
prove the performance of sequence-to-sequence G2P models.
A single seq2seq model is trained on multiple phoneme lexicon
datasets containing several languages and phonetic alphabets.
Esch et al. [14] train recurrent neural network-based models to
predict the syllabification and stress patterns of the input text for
TTS, while also deriving phonetic transcriptions in the process.
The use of entire phrases as input to LSTM, biLSTM and CNN-
based neural networks and their evaluation in English, Czech
and Russian is presented in [15].
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Starting from this overview of multilingual and neural
networks-based training schemes, RECOApy’s G2P module in-
corporates the use of online collaborative phonetic lexicons and
lexicon-tailored seq2seq neural network architectures derived
with the help of an evolution strategy. The RECOApy tool,
along with the parsed lexicons and complete set of trained mod-
els are made freely available. The G2P module can be used as a
standalone tool as well.

The paper is organised as follows: Section 2 introduces the
recording app and its features. Section 3 presents the phonetic
transcription tool development and hyperparameter tuning us-
ing evolution strategies. Results of the phonetic converters are
discussed in Section 3.3, and conclusions are drawn in Sec-
tion 4.

2. RECOApy GUI

Recording prompted speech by end-users can be easily per-
formed with any of the numerous free general purpose record-
ing tools available, such as Audacity* or Wavesurfer [16]. But
this means that in order to obtain phrase-length speech seg-
ments, the continuous recording stream needs to be manually
segmented and aligned to the prompts. Or that the recording
operator needs to start and stop the recording after each prompt
reading. In both cases incorrect readings need to be marked or
deleted. This makes the methods tedious, time consuming and
error prone.

RECOApy was developed with the main objective of
streamlining the end-user speech recording process through a
series of pre- and post-processing steps. The GUI application
is implemented in Python 3.7 with Tkinter® and PyAudio.* Its
interface is shown in Figure 1. Each prompt is individually dis-
played to the speaker. Once the recording starts, the input am-
plitude is monitored and its peak value is displayed such that
any signal distortion or low level input can be detected. For ad-
ditional monitoring, the lower panels of the interface display the
waveform and spectrogram of the recorded prompt. Parameters
such as sampling frequency and bit depth can be set from the
configuration file and depend on the available hardware. The
recording operator can easily navigate through the prompts and
re-record any of them without any extra setup. Additional fea-
tures of RECOApy include waveform normalization and silence
trimming, as well as a Safe Copy option. This means that if the
recording operator is unsure of the correctness of the current
recording, a backup copy can be saved and later inspected.

Alongside the orthographic form of the prompts, the pho-
netic transcription can also be displayed. This enables the
speaker to read the prompts as intended by the developer. The
phonetic transcription may already be available in the prompts,
or can be generated and saved from within RECOApy, as intro-
duced in the next section.

3. G2P conversion module

To further enhance the usability and applicability of the record-
ing tool, and given the results of [4], RECOApy can perform
an accurate phonetic transcription of the prompts in eight lan-
guages: Czech, English, French, German, Italian, Polish, Ro-
manian and Spanish. The data and methods used to develop the
grapheme-to-phoneme converters are described next.

2https://www.audacityteam.org/
3https://wiki.python.org/moin/TkInter
“https://pypi.org/project/PyAudio/
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Figure 1: RECOApy GUI

3.1. Phonetic lexicons

Even for the mainstream languages, large, manually annotated
lexicons are not easily and readily accessible. And most re-
search groups have developed their internal resources [9, 14].
An alternative to this individual effort is the collaborative online
resource called Wiktionary. It contains word definitions in 171
languages, of which 45 languages include more than 100,000
entries. The usability of Wiktionary as an alternative to the
hand crafted resources has already been studied—[17] shows
its great impact on the future directions of lexicography. A sig-
nificant number of the dictionary entries also include phonetic
transcriptions. Their use in G2P methods has been tackled be-
fore [7, 8], and can therefore constitute the base for the work
presented in this paper.

However, as this resource is constantly expanding, process-
ing the latest database dumps is beneficial [7].> A first step
for preparing the lexicons was to determine the list of words
which include phonetic entries and to extract these pronuncia-
tions. Because the data is crowd-controlled, there is no guar-
antee that the transcriptions are correct and consistent, or that
the entries pertain to a single language. To mitigate these is-
sues, a part of the transcriptions were discarded: entries con-
taining graphemes outside the standard alphabet of the respec-
tive language; entries containing phonemes whose occurrence
is less than 100 across the respective lexicon; and entries with a
phonetic transcription significantly longer than the orthographic
form, which might be indicative of two or more pronunciation
versions entered in the same field. There was also a set of identi-
cal entries (same word, same phonetic transcription), and these
were collapsed into a single entry. All lexical stress symbols,
if present, were removed. The final number of entries in each
lexicon can be found in Table 2.

Due to the potential transcription errors present in Wik-
tionary, which might affect the performance of the G2P conver-
sion networks, two well-established manually checked lexicons
were also included in the evaluation: the English CMU Pronun-
ciation Dictionary° and the Romanian MaRePhor lexicon [18].
Version 0.7b of CMUdict was used and all entries containing
numbers and any other symbol except the apostrophe were dis-
carded. The lexical stress in the pronunciation was removed.

Swiktionary-20200301* versions of the database were used here.
Shttp://www.speech.cs.cmu.edu/cgi-bin/cmudict
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3.2. G2P conversion networks

Given the variable lengths of the orthographic and phonetic
representations of a word, the task of grapheme-to-phoneme
conversion is inherently a sequence-to-sequence mapping prob-
lem [19]. Within the set of sequence-to-sequence deep learn-
ing algorithms, the most prominent are those based on recurrent
(RNN), convolutional (CNN) and full-attention (Transformer)
architectures. Although the RNN seq2seq is a highly efficient
and adequate method to process temporal or order dependent se-
quences, it exhibits a slow convergence and high computational
complexity. As a result, more and more NLP tasks have been
addressed with CNN or hybrid seq2seq alternatives [20, 21].
Along the CNN-based architecture, the Transformer network
has been successfully applied in machine translation tasks [22],
and G2P conversion networks [9, 23].

These two seq2seq architectures were selected as the start-
ing point in the development of RECOApy’s G2P module. The
CNN network’s encoder and decoder are composed of 1D con-
volution, activation and normalization layers. An attention layer
merges the hidden representations of the encoder and decoder.
The attention context is concatenated with the decoder repre-
sentation and passed through another set of 1D convolution
layers—denoted as decoder output—to generate a softmax out-
put. No residual connections or embedding layers are used. The
Transformer network closely follows the architecture of [22],
with multi-head self-attention layers combined with fully con-
nected ones in the encoder, decoder and decoder output mod-
ules. A positional embedding layer pre-processes the inputs.

For these two neural architectures, the topologies which ob-
tained the best results for English are described in [9, 23, 24].
However, taking into consideration the G2P complexity across
languages, as well as the variable dimension of each phonetic
lexicon, the architectures’ hyperparameters need to be opti-
mized [25]. Genetic algorithms and evolution strategies man-
age to provide near-optimal solutions for complex tasks, such as
image classification [26] and reinforcement learning [27]. For
the current task of G2P conversion across multiple languages
and datasets, an evolution strategy (ES) similar to the one de-
scribed in [26] was adopted. The genes represent various topol-
ogy parameters, such as number of layers in the encoder or the
decoder, the hidden dimensions of the layers or the activation
function. The fitness of a genome is determined on its ability to
predict a set of word-level phonetic transcriptions. The initial
population is randomly selected from the genome pool. In each
new generation, the fittest individuals are maintained and bred
to create new individuals by random recombinations and muta-
tions. A small sample of the less fit individuals are also bred in
order to explore the gene space more thoroughly.

3.3. G2P results

The neural network architectures’ hyperparameters were opti-
mized over 10 generations each with a population size of 10.
The fitness of a genome was assessed in terms of the word error
rate (WER) computed over a held-out test set of 500 samples
at the end of a 20 epoch training process. The small number of
epochs and evaluation samples was chosen so that the evolution
strategy did not fit the respective train-test split. The number of
lexicon entries used for hyperparameter optimisation was lim-
ited to 150,000 samples.” The set of genes and gene values for
each neural architecture is shown in Table 1. This set does by
no means explore the entire hyperparameter search space, but it

7See Table 2 for the number of entries in each lexicon.

Table 1: Set of genes and gene values used in the evolution
strategy. The first column marks the gene ID within the genome.

Gene ID CNN seq2seq

G1 encoder layers 2,3,4

G2 encoder layers dimension 32, 64, 128, 256

G3 decoder layers 2,3,4

G4 decoder layers dimension 32, 64, 128, 256

G5 decoder output layers 2,3,4

G6 decoder output layers dim. 32,64, 128

G7 activation ReLU, Linear

G8 optimizer Adam, RMSprop

G9 batch size 32, 64, 128, 256, 512

Transformer seq2seq

G1 encoder layers 2,3,4

G2 decoder layers 2,3,4

G3 embedding dimension 32, 64, 128

G4 attention heads 2,4

G5 dropout rate 0.01, 0.05, 0.1, 0.15

G6 hidden layer dimension 32,64, 128, 256
512, 1024

G7 batch size 32, 64, 128, 256, 512

does address some of the key topological variables. The fittest
individual for each neural architecture, language and lexicon
was selected and trained further on the entire set of entries. An
early stopping criterion set to monitor variations of less than 1%
in the loss metric over 50 steps prevented overfitting. An 80-20
split with random sampling was employed for training and test-
ing the networks, respectively. The split was different from the
one used in the evolution strategy, and the fitness computation
data was discarded.

Table 2 shows the results of the G2P conversion module. It
includes the total number of entries in each lexicon next to the
number of unique entries and phonetic symbols. The number of
phonetic symbols represent the set of symbols used in the pho-
netic transcriptions. For the Wiktionary lexicons these might
not fully overlap with the language’s phoneme set. For each
neural architecture the genes of the fittest individual are also
presented. The accuracy of the G2P is reported in terms of word
error rate (WER) and Levenshtein distance-based phoneme er-
ror rate (PER) [28]. For entries with multiple pronunciations,
the target which minimized the PER and WER was selected.

The best performing architecture varies across languages,
as well as in between lexicons of the same language, but the
error rate differences are not truly significant. For example,
the Romanian Wiktionary lexicon is better fitted by the CNN
seq2seq, while for MaRePhor, the Transformer achieves lower
WER and PER. For English, both lexicons are better fitted by
the Transformer. The dataset’s dimension does not seem to
favour any of the architectures either, even though the number
of trainable parameters is largely different. For example, the
MaRePhor CNN model has 173,672 trainable parameters, and
the transformer has only 71,146. But by inspecting the com-
parable sized lexicons in Czech and Spanish, the Transformer
achieves better WER and PER for Czech, yet falls short of the
CNN seq2seq in Spanish. This happens despite the fact that
Czech and Spanish also exhibit comparable orthographic trans-
parency levels [6]. One conclusion that can be directly drawn
from here is that there is no universal recipe to solve the G2P
task, and each solution and architecture needs to be tailored to
the particular language, phonetic representation, and available
resources. The absolute error rates for each language presented
here are comparable or lower than the ones in [7] and [14]. But
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the different lexicon versions and train-test splits make a direct,
fully correct comparison impossible. As an overview of the ar-
chitectures’ performance, the average WER across lexicons for
the CNN seq2seq is 11.80%, and the PER is 3.95%. For the
Transformer, the average WER is 10.95% and PER is 3.22%.

Inspecting the performance over the supervised lexicons,
for MaRephor the results are in line with previous studies [29].
The CMUdict error rates obtained here (23.16% WER and
8.03% PER) are slightly lower than the ones reported in the
state-of-the-art methods ([23]: 22.1% WER and 5.1% PER).
However, the CMUdict versions and train-test splits are differ-
ent. When applying the same architecture® on this version of the
CMUdict, the results were 22.8% WER and 7.19% PER. It is in-
teresting, however, to notice that the ES evolved a rather similar
architecture for the Transformer seq2seq. It may be the case
that an evaluation of the fitness over larger number of epochs
and validation set, would yield the same architecture, and there-
fore same performance. One other interesting fact in the re-
sults reported here is the high WER for Italian. When analysing
the decoded sequences from both networks, it was found that
over 60% of the erroneous words had only a single incorrect
phoneme, and it was mostly the case of vowel-semivowel sub-
stitutions.

Looking at the inference duration, the MaRePhor CNN
seq2seq model processes S000 words in approximately 55 sec-
onds, while the Transformer seq2seq does it in around 120 sec-
onds.” Given the large difference in inference time and only
minor drops of accuracy for some of the lexicons, RECOApy
integrates the CNN-based models alone. However, the trained
Transformer models are available in the tool’s webpage.

8The authors of [23] kindly provided their implementation.
90n an NVidia GeForce RTX 2080 Ti GPU with 12GB vRAM.

4. Conclusions

This paper introduced RECOApy, a tool for data recording, pre-
processing and phonetic transcription of training data aimed at
speech-based end-to-end applications. The tool enables fast and
accurate recording of text prompts at various sampling rates
and bit depths, while offering the recording operator the pos-
sibility to supervise the quality of the process as well. Ad-
ditional automatic options to normalise the audio and to dis-
card the start and end silence segments are also available. One
other important feature of RECOApy is that of automatic pho-
netic transcription of the prompts in eight languages: Czech,
English, French, German, Italian, Polish, Romanian and Span-
ish. The G2P module consists of state-of-the-art neural network
based architectures achieving low word and phoneme error rates
across all languages. As a conclusion, the RECOApy tool can
most certainly be used as a reliable means to develop the train-
ing data for end-to-end speech-based applications. In fact, our
research group has already collected over 50 hours of prompted
speech from non-expert volunteers using this recording tool.
The tool, lexicons and models are available here: https:
//gitlab.utcluj.ro/sadriana/recoapy/.

Future developments of the tool include the addition of
more languages in the G2P module, a more in-depth analysis
of the hyperparameter space, as well as the augmentation of
the prompts with syllabification and lexical stress assignment.
A potential significant developement would be to also include
prosodic cues—similar to [30].
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