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ABSTRACT

Quantifying the confidence (or conversely the uncertainty) of a
prediction is a highly desirable trait of an automatic system, as
it improves the robustness and usefulness in downstream tasks.
In this paper we investigate confidence estimation for end-to-
end automatic speech recognition (ASR). Previous work has
addressed confidence measures for lattice-based ASR, while
current machine learning research mostly focuses on confi-
dence measures for unstructured deep learning. However,
as the ASR systems are increasingly being built upon deep
end-to-end methods, there is little work that tries to develop
confidence measures in this context. We fill this gap by provid-
ing an extensive benchmark of popular confidence methods on
four well-known speech datasets. There are two challenges we
overcome in adapting existing methods: working on structured
data (sequences) and obtaining confidences at a coarser level
than the predictions (words instead of tokens). Our results
suggest that a strong baseline can be obtained by scaling the
logits by a learnt temperature, followed by estimating the con-
fidence as the negative entropy of the predictive distribution
and, finally, sum pooling to aggregate at word level.

Index Terms— Confidence scoring, uncertainty estima-
tion, automatic speech recognition, end-to-end deep learning

1. INTRODUCTION

Reasoning under uncertainty is one of the tenets of intelli-
gence. The first step towards this goal is to endow systems
with reliable uncertainty estimates of their predictions. Ide-
ally, the larger the uncertainty the more likely the prediction
is erroneous. Alternatively, one can solve the complemen-
tary problem of confidence estimation—in this case, the more
confident a prediction, the more likely the output is correct.

In the context of automatic speech recognition (ASR) con-
fidence estimation can be of crucial importance for many end-
user applications, as it improves the robustness of the sys-
tems in safety-critical tasks, helps avoiding errors in human-
computer dialogue systems and facilitates manual corrections
in audio transcription tasks by flagging the errors. Moreover,
previous research has leveraged confidence estimates for a

number of downstream tasks: propagating uncertainties for au-
tomatic speech translation [1], selecting confident predictions
for self-training [2], manually annotating the less confident
predictions for active learning [3].

In this paper we consider confidence estimation for end-
to-end ASR systems, also known as lattice-free speech recog-
nition [4]. End-to-end models for ASR are gaining traction
recently as their performance matches the one of classical
ASR and have the additional benefits of being conceptually
simple and allowing unified training [5, 6, 7]. However, there
is surprisingly little work on confidence estimation for end-to-
end speech recognition systems, most of the ongoing research
on confidence estimation being carried on computer vision
tasks (image classification or segmentation). We believe that
there are two main challenges to developing confidence scor-
ing methods for ASR systems: the structured output and the
granular predictions (e.g., tokens or graphemes versus words).

ASR systems are structured models (mapping sequences
to sequences) as opposed to usual recognition networks (such
as, image classification) whose output is a single label. The
sequential nature of the output imposes a decoding step, which
complicates not only the prediction but also the confidence
scoring algorithm, as we need estimate the confidence in an
auto-regressive context (the already predicted sequence). For
this reason, we fix the predictions based on a pre-trained ASR
and apply the confidence scoring methods on top of token
probabilities, which are conditioned on the fixed transcript.

In order to enable open vocabulary predictions, end-to-end
ASR systems usually use subword tokens to represent the out-
put (byte-pair encoded tokens or even graphemes). However,
given that the tokens lack semantics, for many downstream
applications we are interested in estimating the confidence of
words. To this end, we explore ways of aggregating the token-
level uncertainty measures to the larger units, corresponding
to words; in fact, the presented techniques can be extended to
even coarser predictions, such as sentence or utterance level.

In this context, our main contributions are the following: (i)
we adapt several state-of-the-art uncertainty estimation meth-
ods to the end-to-end ASR pipeline; (ii) we propose and evalu-
ate aggregation techniques to obtain user-relevant confidence
estimates (i.e. word-level); (iii) we perform a thorough evalu-
ation on multiple speech benchmark datasets. To the best of



our knowledge, this is the first study that provides an in-depth
analysis of confidence measures for end-to-end ASR.

2. RELATED WORK

In this section we review two lines of research that are related
to our work.

Confidence scoring for speech recognition. Most prior
work on confidence scoring for ASR targets classical systems
based on the HMM-GMM paradigm. These methods first ex-
tract a set of features from the decoding lattice, acoustic or
language model, and then train a classifier to predict whether
the transcription is correct or not. Typical examples of features
include log-likelihood of the acoustic realization, language
model score, word duration, number of alternatives in the con-
fusion network [8, 9, 10]. More recently, Swarup et al. have
augmented the feature set with deep embeddings of the input
audio and the predicted text [11], while Errattahi et al. have
shown that the benefits of domain adaptation on the extracted
features [12]. The classifiers employed by the confidence scor-
ing methods range from conditional random fields [13, 14]
and multiple layer perceptrons [15] to bidirectional recurrent
neural networks [16, 17, 18].

Confidence scoring in end-to-end systems. The baseline
method for confidence estimation in neural networks is to
use directly the probability of the most-likely prediction [19].
However the neural networks tend to be overconfident and
the probability estimates can be improved through tempera-
ture scaling [20], which typically leads to better calibration
[21, 22]. The most promising direction in terms of simplic-
ity and usefulness involves Monte Carlo estimation: Gal and
Ghahramani use dropout at test time to obtain multiple predic-
tions, which are then averaged [23], while Lakshminarayanan
et al. average the predictions over an ensemble of networks
usually trained with different initializations [24]. The latter has
been show to be very reliable on challenging out-of-domain
datasets [25], but coming at a high cost [22]. The literature
on general confidence scoring is rich and continually evolv-
ing; the most interesting research avenues involve Bayesian
averaging [26], generative models [27, 28], input perturbations
[29, 30], exploiting inner activations [31, 32].

At the intersection of the two lines of research, there is the
recent work of Malinin and Gales [33], which similar to us ad-
dresses the task of confidence estimation for end-to-end ASR
systems. However, they are concerned with token and sentence
uncertainty estimation, while we are interested in estimation at
word level, and, consequently, provide more focus on the ag-
gregation techniques. Furthermore, they employ ensembles as
their primary method of confidence estimation, while we also
evaluate temperature scaling and dropout methods. Dropout
was previously used for obtaining confidence scores for ASR
[34], but our approaches differ: in [34] multiple hypotheses are
generated via dropout and then word confidences are assigned
based on their frequency of appearance in the aligned hypothe-

ses; in contrast, we aggregate the posterior probabilities and
not the hypotheses, which simplifies the procedure as it avoids
the alignment step.

3. METHODOLOGY

This section presents the confidence estimation methodology
and proposed ways of improving them. We first start with a
description of the setup and the involved notation.

We consider a sequence-to-sequence model that maps an
audio sequence a to a sequence of tokens t = (t1, · · · , tT ).
The model is specified by the parameters θ, which are learned
by minimizing losses such as the CTC or KL divergence on
the training set. At test time the model outputs probabilities for
the next token k in an auto-regressive manner p(tk|t̂<k,a; θ)
based on the already predicted tokens t̂<k. These probabilities
are used for performing decoding via beam search to obtain
the most likely sequence of tokens. Given that the conditioned
output probability is a distribution over the V tokens in the
vocabulary, we denote it by a V -dimensional vector, pk.

The main assumption of our methodology is the availability
of a probability distribution over each token. This criterion is
satisfied by most end-to-end ASR architectures including the
RNN transducer [35], recurrent neural aligner [36], attention-
based encoder-decoder [37] and 2D LSTMs [38].

3.1. Confidence estimation

Our goal is to obtain a confidence score for each word in the
output transcript of the ASR. We achieve this in two steps.
First, using the posterior probabilities at each time step pk, we
extract features to encode the confidence score of each token
s
(t)
k . Second, we aggregate the token-level scores into word-

level confidence scores s(w)j , based on the word boundaries.
Next we detail these two steps; see also figure 1.

Feature extraction. To measure the confidence in a pre-
diction at token level we use two variants:

• Log probability (log-proba) of the most probable pre-
diction given by classifier, that is s(t) = logmaxp.
This type of feature has been shown to yield a strong
baseline for the related tasks of misclassification and
out-of-distribution detection [19].

• Negative entropy (neg-entropy) computed over the vo-
cabulary of tokens at each time stamp, that is s(t) =
pᵀ logp. A large entropy means a large uncertainty or,
conversely, a large negative entropy implies a confident
prediction.

Aggregation. To obtain word-level features from the
token-level ones, we experiment with three types of aggre-
gation functions: sum, average, minimum. Since both pro-
posed features are negative, summing across tokens will result
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Fig. 1. Overview of the confidence scoring procedure. From an end-to-end ASR system we obtain probabilities pk of the k-th
token given an utterance a and previously predicted tokens t̂<k. Based on these probabilities we extract token-level confidence
scores s(t), which we then aggregate to obtain scores at word level s(w). The size of the token vocabulary is denoted by V , the
number of tokens is denoted by T and the number of words by W .

in smaller values and, hence, in lower confidences; this be-
haviour can be desirable as longer words are more likely to be
erroneous (see figure 2). Also, when we sum the log probabil-
ity of the tokens, we obtain a word-level score corresponding
to the log probability of the entire sequence. Taking minimum
is justified by the fact that we might want a low confidence if
at least one of the tokens has low confidence.

3.2. Improving the token probabilities

We propose three ways to make the token probabilities reliable:
temperature scaling, dropout and ensembles of models. Our
assumption is that by improving the token probabilities, we
also improve the word-level scores.

Temperature scaling [20, 21] consists of dividing the
logit activations (pre-softmax values) by a scalar τ (known
as temperature). The value of τ ranges from zero to infinity
and it controls the shape of the distribution: when τ → 0 we
obtain a uniform distribution, when τ →∞ we obtain a Dirac
distribution on the most likely output. Based on τ we update
token-level probabilities p at each time stamp k, as follows:

p′
k = softmax(log(pk)/τ). (1)

We then extract features s(t) on the updated probabilities
p′, aggregate them into the word-level score s(w) and, finally,
classify the word as either correct or incorrect:

P (correct) = σ(α · s(w) + β). (2)

The variables α, β and τ are parameters and are learnt
by optimizing the cross-entropy loss on a validation set. The
labels are set at word level by aligning at the groundtruth text
with the transcription. Note that the parameters α and β are
not changing the ranking of the predictions, but allow us to
learn a calibrated confidence model.

Dropout [39] is a technique that masks out random parts
of the activations in a network, making the network less prone
to overfitting. In [23] it has been observed that the dropout in-
duces a probability distribution over the weights of the network

and can be consequently used for approximate Bayesian infer-
ence. We follow this idea and average the token probabilities
obtained over multiple runs of dropout:

p′
k =

1

N

∑
n

p̂k (3)

where p̂ specifies the dropout prediction. While the original
work [23] employed entropy as a confidence measure, there
is no reason not use other uncertainty features; we use the
updated probabilities p′ to extract both log-proba and neg-
entropy features.

Ensembles [24] are based on the same idea of averaging
predictions from multiple sources, but in this case the set of
weights come from independently trained networks (different
random seeds used in initialization and batch selection).In our
case, we average the token predictions over the models:

p′
k =

1

N

∑
n

p(tk|t̂<k,a; θn), (4)

where {θn}Nn=1 specifies the ensemble of models. Note that
we need to have the same context t̂<k for all models in the
ensemble, so we use the one given by a pre-trained model.

The three presented approaches can be combined; for ex-
ample, we can first update the probabilities using temperature
scaling then average them using dropout. In the experimental
section we will evaluate all these combinations.

4. EXPERIMENTAL SETUP

In this section, we describe the datasets used for evaluation,
the ASR systems for which we build confidence estimates, and
the evaluation metrics.

4.1. Datasets

We have opted for multiple publicly-available and widely-used
datasets for our experimental setup.



Table 1. Size of the datasets (test split) used for confidence
estimation evaluation.

dataset no. utts. duration

Libri clean 2.6K 5.4 h
Libri other 2.9K 5.3 h

TED 1.1K 2.6 h
CommonVoice 66K 72 h

LibriSpeech [40] is a corpus of approximately 1000 hours
of read audiobooks derived from the LibriVox project. We use
the dataset for both training the ASR and evaluating the confi-
dence scoring: for training we use the three splits clean100,
clean360 and other500, while for development and eval-
uation we use the standard clean and other splits.

TED-LIUM 2 [41] consists of talks and their transcripts
collected from the TED website. We use the dataset for evalu-
ation and consequently employ only the predefined dev and
test subsets.

CommonVoice [42] is a collaborative dataset of short tran-
scripts that are read by people across the world; we use the
first release of the dataset.1 The data is used for evaluation and
we defined dev and test subsets by choosing 10% random
samples for each of them.

Table 1 presents the test size of each evaluation dataset.

4.2. ASR systems

The main ASR system is based on the pre-trained LibriSpeech
model provided by the ESPNet toolkit [43]. The model im-
plements the transformer architecture [44], takes as input 80-
dimensional Mel filter banks (extracted with the Kaldi toolkit
[45]) and outputs a sequence of tokens. The token vocabulary
has dimension 5000 and is obtained by subword segmenta-
tion based on a unigram language model [46]. The model
is trained on the 960h of the LibriSpeech dataset, which is
further augmented using the SpecAugment techniques (time
warping, frequency masking, time masking) [47]. For decod-
ing we use a language model, which is also implemented as a
transformer and is trained on the LibriSpeech transcriptions
and other 14,500 public domain books [40]. The vocabulary
of the language model consists of the same 5000 tokens as
used by the ASR model.

For the ensemble experiments we re-train the ASR system
using the same architecture and data, but different random
seeds. We repeat the process four times obtaining four in-
dependent models. Due to computational constraints, these
models were trained for a shorter number of epochs than the
main system (10 versus 120), but we observed that the val-
idation loss function curve began to flatten and that the test

1https://common-voice-data-download.s3.amazonaws.
com/cv_corpus_v1.tar.gz

performance is reasonable (5.5%±0.4 WER on Libri clean vs
2.7% obtained by the pre-trained model).

4.3. Evaluation metrics

Ideally, we want the confidence score to be correlated with the
correctness of the transcription, that is, correct words should
have large confidence score, while incorrect ones, low score.
Following previous work [19, 31, 33], we employ metrics that
are generally used for evaluating binary classifiers, but which
have the discrimination threshold varied. More precisely, we
measure the area under precision-recall curve (AUPR) and the
area under receiver operating characteristic curve (AUROC).
However, depending on what we want to focus (correctly or
erroneously transcribed words) we obtain different variants: if
we are interested in detecting erroneously transcribed words,
we will treat the errors as the positive class; on the other hand
if we are interested in the correctly transcribed words, we will
treat the latter as the positive class. Hence, for AUPR we use
two variants AUPRe (when errors are treated as positives) and
AUPRs (when correct words are treated as positives). For
AUROC the same value is obtained for either choice, so there
is no need to make this distinction.

We do not evaluate calibration, since our methodology is
not designed to necessarily yield a probability, but a score that
is correlated with the label. The temperature scaling approach
does indeed transform the score to a probability (since it learns
the scaling coefficients α and β), but the same cannot be said
about the other approaches (for example, negative entropy).

5. RESULTS

This section presents the experimental results. We start with an
evaluation of features and their aggregations (§5.1), and then
report results for the improved variants involving temperature
scaling, dropout (§5.2) and ensembles (§5.3).

5.1. Features and aggregation

We evaluate the proposed uncertainty features and aggregation
techniques on the four datasets described in subsection 4.1. We
use the pre-trained model to obtain text predictions for all the
audio files in the test split of each dataset, and then estimate the
confidence based on the methodology described in subsection
3.1. Table 2 presents the results for all combinations of features
and aggregations.

Comparison of features. We observe that log probability
features outperform the entropy features across all settings
(aggregations and datasets). The only notable exception is the
CommonVoice dataset where the results are comparable.

Comparison of aggregations. Generally, the sum aggre-
gation works better with log-proba features, while the min
aggregation works better for entropy features. The sum might
not be well suited for entropy features because their magnitude



Table 2. Confidence scoring results for combinations of features and aggregations on the four test splits. For all three metrics
reported (AUPRe, AUPRs, AUROC) larger values are better. We indicate the word error rate of the pre-trained ASR system on
each of the dataset by the figures on the right of the name.

Libri clean / 2.7% Libri other / 6.0% TED / 13.3% CommonVoice / 28.6%

feat. agg. AUPRe AUPRs AUROC AUPRe AUPRs AUROC AUPRe AUPRs AUROC AUPRe AUPRs AUROC

1 log-proba sum 21.55 99.21 82.41 29.99 98.10 81.75 39.97 95.88 79.95 48.98 77.71 64.84
2 log-proba min 21.85 99.19 82.47 28.64 98.06 81.66 39.74 95.94 80.58 46.79 76.74 62.67
3 log-proba avg 20.12 99.10 80.90 26.72 97.93 80.47 38.74 95.88 80.29 44.51 75.82 60.87

4 neg-entropy sum 17.31 99.10 79.97 26.37 97.86 79.58 34.96 95.41 77.57 47.71 77.10 63.74
5 neg-entropy min 19.94 99.09 80.55 26.75 97.82 79.64 37.55 95.56 79.01 45.51 76.00 61.21
6 neg-entropy avg 17.55 98.95 77.72 24.26 97.59 77.46 36.28 95.42 78.29 42.64 74.83 58.75
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no. tokens / word

0.0

0.5
TED

2.5 5.0 7.5
no. tokens / word

0

1
CommonVoice

Fig. 2. Fraction of errors as a function of the word length. The
fraction of errors is computed as the number of erroneously
transcribed words divided by the total number of words, while
the word length is measured as number of tokens.

is larger than for log-proba and the word confidence gets pe-
nalized too much by the length; but, as we will see further, this
behaviour can be alleviated by temperature scaling. Averaging
is generally underperforming for both features, suggesting that
length-invariant measures are detrimental. Indeed, a closer
look at the frequency of errors with the length size indicates
that the more tokens a words has the more likely is that it is
incorrect, see figure 2. Statistical tests (paired t-tests on the
twelve results from each configuration at p = 0.05) confirm
that for both features the sum and min aggregation are signifi-
cantly better then avg, while the statistical test between sum
and min did not reject the null hypothesis for neither feature.

Comparison across datasets. As expected, the pre-trained
model performs best on in-domain data (2.7% WER on Libri
clean and 6.0% on Libri other), the performance then dropping
sharply as we evaluate on out-of-domain data (13.3% on TED
and 28.6% on CommonVoice). In each of these settings the
number of words that are correctly classified changes, going
from more on the Libri splits to fewer on TED and Common-
Voice. This observation explains why the performance for
AUPRs drops as a function of the domain of the data, and,
conversely, why the AUPRe performance improves. Unfor-

tunately, for this exact reason—the different performance of
the base ASR system on the four datasets—it is impossible to
compare the confidence methods across datasets, as they use a
different groundtruth [22].

5.2. Temperature scaling and dropout

We benchmark the confidence scoring method after improving
the token probabilities by two of the described techniques:
temperature scaling and dropout. We use the pre-trained ASR
system and report results only on the TED test set. The parame-
ters for temperature scaling method are learnt on the dev split
of the TED dataset for each setting of feature and aggregation.
When temperature scaling is combined with dropout we first
apply the temperature scaling (using the same temperature)
and the follow with the aggregation over dropout. The dropout
method averages 64 independent predictions. Table 3 presents
the results for all combinations of features and aggregations
and improvement techniques.

The results indicate that both proposed methods improve
the results as is their combination, which gives overall the best
result. We observe that log-proba features benefit more from
dropout, while the neg-entropy feature yield more improve-
ments when temperature scaling is used. Interestingly, the best
results are now obtained for the neg-entropy with sum aggre-
gation (row 16). Figure 3 shows that the dropout performance
improves with the number of runs and plateaus around the
chosen value of 64.

5.3. Ensembles

We present results for confidence scoring using ensembles
of models and their combinations with the other improved
versions (temperature scaling and dropout). For each of the
retrained models from the ensemble we use the predictions
of the pre-trained model to select the transcription; the re-
trained model is just used for confidence scoring, by extracting
the confidence features described previously. The results are
presented in table 4. For the rows that do not use ensemble



Table 3. Confidence scoring results on the TED test set for
combinations of features, aggregations and their improved
variants – temperature scaling (TS) and dropout (D). The
bullet sign • indicates whether a variant is employed. Bold
results indicate the best results for the feature-aggregation
combination; these results show that using both temperature
scaling and dropout yields the best results.

feat. agg. TS D AUPRe AUPRs AUROC

1

log-proba sum

39.97 95.88 79.95
2 • 41.41 96.81 82.78
3 • 40.92 96.19 81.11
4 • • 42.99 97.14 84.10

5

log-proba min

39.74 95.94 80.58
6 • 42.08 96.94 83.76
7 • 39.84 95.98 80.74
8 • • 42.17 97.00 83.93

9

log-proba avg

38.74 95.88 80.29
10 • 41.19 96.95 83.73
11 • 38.97 95.99 80.66
12 • • 41.32 97.06 84.08

13

neg-entropy sum

34.96 95.41 77.57
14 • 33.14 96.22 79.45
15 • 42.16 96.91 83.50
16 • • 43.59 97.62 85.51

17

neg-entropy min

37.55 95.56 79.01
18 • 38.75 96.53 81.98
19 • 41.23 96.87 83.50
20 • • 42.23 97.60 85.51

21

neg-entropy avg

36.28 95.42 78.29
22 • 38.01 96.51 81.85
23 • 40.22 96.53 82.48
24 • • 41.15 97.43 85.18

4 8 16 32 64
N

42.0

42.5

43.0

43.5

AU
PR

e

Fig. 3. AUPRe performance as a function of the number of
dropout runs on the TED test set. The horizontal red line in-
dicates the performance of the model without dropout. The
model uses neg-entropy features, sum aggregation and temper-
ature scaling.

Table 4. Confidence scoring results on the TED test set for
combinations of temperature scaling (TS), dropout (D) and en-
sembles (E), using neg-entropy features and sum aggregation.

TS D E AUPRe AUPRs AUROC

1 28.58 95.30 75.79

2 • 32.00 96.32 79.47
3 • 27.49 95.51 75.67
4 • 30.89 96.26 78.89

5 • • 31.10 96.40 79.06
6 • • 34.57 96.95 81.64
7 • • 28.94 96.26 77.93

8 • • • 33.00 96.84 80.82

(rows 1, 2, 3 and 5) we evaluate each of the four single models
independently and report the mean performance.

The pre-trained model (table 3, row 13) has generally a
better performance the retrained ones (table 4 row 1), suggest-
ing that the predictive performance of a model can correlate
with its confidence scoring performance.

Among the three improvement methods, we note that tem-
perature scaling gives the largest performance boost on all
three metrics (row 2). Surprisingly, the dropout method im-
proves only the AUPRs performance over the baseline (row 3).
On combinations of two methods, temperature scaling and en-
semble complement each other and obtain better performance.

6. CONCLUSIONS

This paper presented an approach for word-level confidence
scoring in end-to-end speech recognition systems. We carried
a thorough ablation study on features and their aggregation on
three well-known speech databases (LibriSpeech, TED-LIUM
and CommonVoice) and further evaluated improved methods,
which modify the token probabilities, and their combinations.
Our main observation is that temperature scaling improves
both uncertainty features (log-proba and neg-entropy) as well
as the other two methods (dropout and ensemble). Using a
pre-trained model allows replicability and enables comparison
with future confidence scoring methods that will use the same
ASR. We strived for simplicity by using a compact feature set
(based on readily-available token posteriors); in future work we
will consider augmenting these features with complementary
information (e.g., token duration extraction from attention).
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Sanchis, and Alfons Juan, “Speaker-adapted confidence
measures for speech recognition of video lectures,” Com-
puter Speech & Language, vol. 37, pp. 11–23, 2016.

[15] Kaustubh Kalgaonkar, Chaojun Liu, Yifan Gong, and
Kaisheng Yao, “Estimating confidence scores on ASR
results using recurrent neural networks,” in ICASSP,
2015, pp. 4999–5003.

[16] Atsunori Ogawa and Takaaki Hori, “Error detection and
accuracy estimation in automatic speech recognition us-
ing deep bidirectional recurrent neural networks,” Speech
Communication, vol. 89, pp. 70–83, 2017.

[17] M. A. Del-Agua, A. Gimenez, A. Sanchis, J. Civera,
and A. Juan, “Speaker-adapted confidence measures
for ASR using deep bidirectional recurrent neural net-
works,” Transactions on Audio, Speech, and Language
Processing, vol. 26, no. 7, pp. 1198–1206, 2018.

[18] Qiujia Li, PM Ness, Anton Ragni, and Mark JF Gales,
“Bi-directional lattice recurrent neural networks for confi-
dence estimation,” in ICASSP, 2019, pp. 6755–6759.

[19] Dan Hendrycks and Kevin Gimpel, “A baseline for de-
tecting misclassified and out-of-distribution examples in
neural networks,” in ICLR, 2016.

[20] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean, “Distill-
ing the knowledge in a neural network,” arXiv preprint
arXiv:1503.02531, 2015.

[21] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Wein-
berger, “On calibration of modern neural networks,” in
ICML, 2017, pp. 1321–1330.

[22] Arsenii Ashukha, Alexander Lyzhov, Dmitry Molchanov,
and Dmitry Vetrov, “Pitfalls of in-domain uncertainty
estimation and ensembling in deep learning,” in ICLR,
2020.

[23] Yarin Gal and Zoubin Ghahramani, “Dropout as a
Bayesian approximation: Representing model uncer-
tainty in deep learning,” in ICML, 2016, pp. 1050–1059.

[24] Balaji Lakshminarayanan, Alexander Pritzel, and Charles
Blundell, “Simple and scalable predictive uncertainty
estimation using deep ensembles,” in NeurIPS, 2017, pp.
6402–6413.

[25] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado,
David Sculley, Sebastian Nowozin, Joshua Dillon, Bal-
aji Lakshminarayanan, and Jasper Snoek, “Can you



trust your model’s uncertainty? Evaluating predictive
uncertainty under dataset shift,” in NeurIPS, 2019, pp.
13991–14002.

[26] Wesley J Maddox, Pavel Izmailov, Timur Garipov,
Dmitry P Vetrov, and Andrew Gordon Wilson, “A simple
baseline for Bayesian uncertainty in deep learning,” in
NeurIPS, 2019, pp. 13153–13164.

[27] Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Di-
lan Gorur, and Balaji Lakshminarayanan, “Do deep
generative models know what they don’t know?,” in
ICLR, 2018.

[28] Tong Che, Xiaofeng Liu, Site Li, Yubin Ge, Ruixiang
Zhang, Caiming Xiong, and Yoshua Bengio, “Deep
verifier networks: Verification of deep discriminative
models with deep generative models,” arXiv preprint
arXiv:1911.07421, 2019.

[29] Shiyu Liang, Yixuan Li, and R Srikant, “Enhancing the
reliability of out-of-distribution image detection in neural
networks,” in ICLR, 2018.

[30] Sunil Thulasidasan, Gopinath Chennupati, Jeff A Bilmes,
Tanmoy Bhattacharya, and Sarah Michalak, “On mixup
training: Improved calibration and predictive uncertainty
for deep neural networks,” in NeurIPS, 2019, pp. 13888–
13899.

[31] Charles Corbière, Nicolas Thome, Avner Bar-Hen,
Matthieu Cord, and Patrick Pérez, “Addressing failure
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