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ABSTRACT
This paper introduces a novel method for blind speech seg-
mentation at a phone level based on image processing. We
consider the spectrogram of the waveform of an utterance as
an image and hypothesize that its striping defects, i.e. discon-
tinuities, appear due to phone boundaries. Using a simple im-
age destriping algorithm these discontinuities are found. To
discover phone transitions which are not as salient in the im-
age, we compute spectral changes derived from the time evo-
lution of Mel cepstral parametrisation of speech. These so-
called image-based and acoustic features are then combined
to form a mixed probability function, whose values indicate
the likelihood of a phone boundary being located at the cor-
responding time frame. The method is completely unsuper-
vised and achieves an accuracy of 75.59% at a -3.26% over-
segmentation rate, yielding an F-measure of 0.76 and an 0.80
R-value on the TIMIT dataset.

Index Terms— blind segmentation, unsupervised seg-
mentation, phoneme segmentation, destriping, image pro-
cessing

1. INTRODUCTION

Recent advances in speech technology, such as highly ac-
curate speech recognition and high quality synthesis, drive
the ambition for systems that can operate in any spoken lan-
guage.1 For this goal to be achieved, the required manual col-
lection and labelling of data is not feasible.2 An alternative is
to devise unsupervised or lightly supervised methods to build
and extract the necessary data and features from recordings
of any language. Phone-level segmentation of an utterance is
one such data and for many speech processing applications it
is in fact an essential requirement, without which the under-
lying models could not be trained. Although determining the

The research leading to these results has received funding from the
Romanian Ministry of Education, under the grant agreement PN-II-PT-
PCCA-2013-4 No 6/2014 (SWARA), and from the EPSRC Programme Grant
EP/IO31022/1, Natural Speech Technology.

1https://www.kth.se/en/forskning/artiklar/
kth-hjalper-wikipedia-borja-prata-1.631897

2The are around 6500 languages spoken worldwide, and for each of them
a group of experts should be available.

phonetic transcription of a text is fairly simple in most lan-
guages, dividing an utterance into its phonetic constituents is
not as trivial. Pronunciation variations, both inter- and intra-
speaker, as well as individual physiological constraints add to
its complexity [1].

Methods to obtain automatic phone-level segmentation
are generally classified into two major categories: con-
strained and unconstrained. For the constrained methods, the
number and sequence of phones in the utterance is available,
and the task is to determine the exact location of their bound-
aries in time. The most common procedure for performing
constrained phone-level segmentation is to use an acoustic
model, usually a hidden Markov model, or dynamic time
warping to perform the so-called forced-alignment [2–5]. Re-
cent work in this area is based on deep belief networks [6]
that are trained to estimate the posterior probabilities of phone
categories and to then locate the boundaries of frames where
phone class assignment is uncertain to an extent. These meth-
ods can achieve performances similar to the inter-labeller
agreement percentages, i.e. 93% [3]. However, correct pho-
netic transcription of an utterance is difficult to obtain as
it requires a lot of manual and expert work. In the second
category, the unconstrained, phonetic content is not known
apriori. There are two types of methods in this category:
methods that use pre-trained models, similar to automatic
speech recognition, to identify and locate the phonetic bound-
aries [7–10]; and methods that determine salient acoustic
changes from spectral or temporal features, and use them to
estimate the number and location of the phone boundaries,
but without providing phone identity, commonly referred to
as blind segmentation methods [11–15].

In this paper we propose a blind segmentation method
motivated by the observation of how human labellers per-
form the phonetic annotation of speech. In most cases, la-
bellers base their boundary assignments on both the acous-
tic signal, by listening to the sample, as well as on the im-
age evidence, through spectrogram inspection. This obser-
vation led us to explore ways in which we could extract al-
ternative features from the spectrogram by interpreting it as
a static image. The majority of the phone transitions consist
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of abrupt changes or shifts in the spectrum, which translate
to discontinuities in the vertical axis of the spectrogram im-
age, or stripes. There are several reasonably accurate image
destriping algorithms available [16–19], that could provide a
good basis for the image-based automatic phonetic segmenta-
tion. As some acoustic transitions are not as prominent in the
spectogram image, we combine the image-based information
with information extracted from the trajectories of Mel cep-
stral coefficients [20]. The combined feature sets are mapped
to a probability function that indicates how likely it is that a
phone boundary is located at a certain time index. The evalu-
ation shows that despite its very simple processing steps, the
method outperforms all the previously published blind speech
segmentation methods evaluated on the same dataset.

The paper is organised as follows: Section 2 describes
the image destriping method used in this work. Section 3
describes how we extract image-based and acoustic features
and the manner in which we combine them. Experimental
results and discussions are presented in Section 4, followed
by conclusions in Section 5.

2. IMAGE DESTRIPING

The automatic image-processing method which can locate
and correct the discontinuities, or stripes which appear in the
spectrogram, are the so-called image destriping algorithms.
Their main purpose is to reduce scanning or sequential image
composition defects [16–19].

For our work, we selected a simple but effective destrip-
ing algorithm which is also available in the open source GIMP
Image Processing Software.3 The algorithm starts by identi-
fying the stripes as local deviations from an average value
computed over a fixed length window centred on the current
vertical image slice.4 The deviation is computed indepen-
dently for each colour component, i.e. red, green and blue
(RGB), and represents a single 3x1 RGB vector for each ver-
tical slice. From these deviation values it is possible to create
the so-called negative pattern of the image by concatenating
the deviation obtained for each image slice. In Figure 1(b)
we show the negative pattern associated with the image from
Figure 1(a). For visualisation purposes, we stacked the pat-
tern horizontally multiple times. This pattern is then applied
to the original image, i.e. the RGB values of each vertical
slice of the original image are multiplied by the negative pat-
tern associated with that slice. The result is an image in which
the discontinuities are smoothed, as it can be observed in Fig-
ure 1(c).

3. PROPOSED PHONE SEGMENTATION METHOD

In the same way as the human labellers use multiple stimuli to
segment an utterance, we extract both image-based and acous-
tic features. We expect the acoustic features to contribute

3GIMP 2.8 available online: https://www.gimp.org/
4The width of the vertical slice is usually set to 1 pixel.
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Fig. 1. The spectrogram (a), negative pattern (b), destriped
spectrogram (c) and visiogram (d) of a realization of the ut-
terance “Her study of history was persistently pursued.”

most in the case of slow phone transitions, such as with diph-
thongs, where spectral changes are not as abrupt and therefore
not as easily identifiable by the image-based features.

3.1. Image-based features

Through a simple visual inspection of a spectrogram, even
non-experts can identify most phoneme boundaries as image
discontinuities, see Fig. 1(a). We are however not interested
in smoothing the image but rather identifying the areas where
the algorithm takes maximum effect, i.e. the discontinuities.
To identify these regions we add a weighted version of the
negative pattern to the spectrogram image. The weight ap-
plied to the pattern is global and bigger than one, so that the
pattern is weighted more in the summation. The result of this
process can be observed in Figure 1(d), and will be referred
to as the visiogram. Although at first glance, it might seem
that the visiogram is very similar to the negative pattern, on
closer inspection, the finer details obtained in this last image
are important in ranking the potential phone boundaries.

Hypothesised segmentation locations are signalled through

https://www.gimp.org/


colour variations in the visiogram. Higher variations corre-
spond to more abrupt spectral changes. To detect and rank
these variations we use the standard CIEDE2000 perceptual
colour distance [21].5 The distance is computed between
every two consecutive vertical slices, and then normalised to
one. The result is therefore a positive number between zero
and one, which can be interpreted as a probability function as-
sociated with the probability that a phone boundary is located
at a certain vertical slice or time index. Figure 2(a) shows an
example of this probability function for a short utterance and
the manually annotated phone boundaries. It can be observed
that this function has higher values in the vicinity of the time
frames where phone boundaries occur.

It can be argued that the negative pattern and the vi-
siogram calculation could also be obtained from the values of
the spectrogram function directly, rather than the RBG values
associated with its image representation. The reasoning for
choosing to use RGB values instead is motivated by the idea
that the quantized representation, the image, is the additional
information used by human labellers when performing the
task.

3.2. Acoustic Features

Based on the positive results obtained in previous phone-level
segmentation studies [22], we selected the Mel cepstral co-
efficients (MCEP) as acoustic features. Similar to the visual
features’ processing steps, we aim to detect spectral variations
from the variations of MCEP values over time. These varia-
tions are computed by calculating a distance measure between
MCEPs of consecutive time frames. The distance measure
that provided best results on a small validation set was the
Manhattan distance, defined as follows:

d(X,Y ) =

n∑
i=1

|xi − yi| (1)

where X = (x1, x2, ...xn) and Y = (y1, y2, ..., yn) are the
two consecutive Mel cepstral coefficients vectors of order n.

The acoustic distance is computed for every pair of con-
secutive analysis frames, and then normalised to 1. Again, we
can associate this value to the probability that a phone bound-
ary is located at a certain time index. Figure 2(b) shows the
acoustically-derived phone boundary probability values for a
short utterance. We can observe that the peaks occuring close
to phone boundaries are not as pronounced as in Figure 2(a)
but the presence of local peaks could still be used as an indi-
cation of a boundary.

The calculation of MCEPs does not impose a substantial
additional computational load to the method since the spectral
representation of the utterance is also required to construct the
visiogram. However, in our current implementation we use

5Due to the complex formulation of the distance, we do not present its for-
mal definition, and refer the reader to http://www.brucelindbloom.
com/index.html?Eqn_DeltaE_CIE2000.html

separate processes to compute the spectrum, but would like to
unify them in the future.

3.3. Combining image-based and acoustic features

We hypothesize that phone boundaries should be assigned to
the regions where both visual and acoustic probabilities are
high, or where one of them is significantly higher than the
neighbouring values. Hence, a mixed probability value is
computed as the product of the two probabilities at each time
index, and summed over a window centred around the current
time frame as follows:

Pb(t) =
1

2N + 1

N∑
i=−N

Pv(t+ i)Pa(t+ i), (2)

where Pb is the mixed probability at time t, Pv and Pa are
the visual and acoustic probabilities, respectively, and 2N+1
is the window length. By examining the mixed probability
function plotted in Figure 2(c), we can notice that its peaks
are better indicators of the phone boundaries. Yet in order
to minimise over-segmentation, a minimum peak height and
distance are used in the peak detection process.

4. SEGMENTATION RESULTS

This section presents the evaluation data and results obtained
with the proposed method. We also compare our results with
other published methods on the same dataset, and discuss the
limitations and future developments.

4.1. Data

Evaluating phone segmentation methods is quite a hard task in
itself, as there are not that many manually labelled speech cor-
pora available. Most of the studies published so far have used
the TIMIT corpus [23] for training, and we therefore selected
it for the evaluation, as well. Our method does not require
any training data, but in order to compare our results directly
to the other methods, we use the test subset of the corpus for
our evaluation. The subset contains 1344 utterances6 from
168 speakers (approx. 1.5 hours of data), sampled at 16kHz
with a 16 bit resolution. The complete 61 phone set was main-
tained, including pauses and separate symbols for the closure
and release intervals of the stops. However, the beginning and
end silence segments were trimmed to 50ms, so that the high
number of spectral discontinuities which commonly occur in
these areas do not bias our results.7

To avoid overtuning on the TIMIT test set data, we
also evaluate our method using a 300 utterance subset (ap-
prox. 28 minutes) of the Italian read speech corpus, CLIPS-

6The *sa dialect calibration utterances were excluded.
7Excluding the silence from the phonetic segmentation evaluation is com-

mon, as a voice activity detection method could be employed as a pre-
processing step.
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Fig. 2. (a) Image-based, (b) acoustic, and (c) mixed proba-
bility function plots for the utterance “Her study of history
was [...]”. The vertical dotted lines represent the reference
phone boundaries. The horizontal lines represent the mini-
mum peak height threshold.

Letto [24].8 The subset contains 15 speakers, and it is sam-
pled at 16kHz with 16 bit resolution. The data is manually
labelled at phone-level using the 43 symbols of the Italian
SAMPA phoneset. The same silence trimming as for the
TIMIT corpus was applied.

4.2. Phone Segmentation configuration

The complete segmentation process is as follows: each utter-
ance is first pre-emphasised using a first order high-pass filter.
The spectrograms are then computed using a 128 length fast
Fourier transform and 5ms window shift using Matplotlib’s
specgram function9, and plotted as a colour mesh. The im-
age resolution was set such that each pixel had a width which
equated to 5ms on the time axis. The destriping algorithm
used a window of length 100. To alleviate accidental high-

8Available online: http://www.clips.unina.it/it/
9http://matplotlib.org/api/mlab_api.html#

matplotlib.mlab.specgram

frequency variations in the resulting image, a 5 pixel wide
Gaussian smoothing process was applied to the visiogram.

The probability function associated with the image-based
features was estimated at every 5ms time index, and smoothed
using a third order median filter. The probability function
associated with the acoustic features was derived from a 12
MCEP plus energy feature set extracted from the STRAIGHT
spectrum [25] using the SPTK tool.10 Initial tests showed
that applying a median filter on this probability function does
not improve the performance of the method, and we there-
fore did not use it in the evaluation. The combination of these
two probability functions was computed over a 15ms win-
dow (N = 1 in Eq. 2). The peak detection algorithm had a
minimum peak height set to 80% of the mixed probability’s
average value across the utterance, and a minimum of 20ms
distance between peaks. These numbers were adjusted on a
small validation set taken from the TIMIT training dataset.

4.3. Evaluation Metrics

In [26] Rasanen et al. proposed a metric that is considered
to be more appropriate for the evaluation of blind segmenta-
tion algorithms than the conventional F-measure statistics. In
blind segmentation over-segmentation is inevitable and this
increase in the number of hypothesised boundaries leads to
an increase in recall. The measure introduced by Rasanen
establishes an ideal operating point of a segmentation algo-
rithm to be at 100% recall and 0% over-segmentation. The
metric uses the following three quantities: the total number
of boundaries in the reference segmentation Nref , the num-
ber of boundaries correctly detected Nhit and the number of
boundaries hypothesised by the proposed method Nalg. Us-
ing these quantities, intermediate values for hit rate HR and
over-segmentation rate OS are computed as follows:

HR =
Nhit

Nref
× 100; OS =

(
Nalg

Nref
− 1

)
× 100 (3)

The final metric, called the R-value is defined as:

R = 1− |r1|+ |r2|
200

(4)

where:

r1 =
√

(100−HR)2 + (OS)2; r2 =
−OS +HR− 100√

2
(5)

To compute Nhit it is common to consider a hit accu-
racy margin. This means that the estimated boundary can lie
within an interval equal to twice the accuracy margin, centred
around the reference boundary location. The most common
value for this accuracy margin is 20ms.

Because not all previously published results report the R-
value, we also use the F-measure to present the performance
of our speech segmentation method.

10Speech Signal Processing Toolkit (SPTK) 3.9 http://sp-tk.
sourceforge.net/
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Table 1. Segmentation results for the image-based, acoustic
and mixed probability functions, expressed in terms of hit rate
(HR), over-segmentation rate (OS), F-measure and R-value,
at various accuracy margins.

Features Margin HR OS F-meas. R-Value
[%] [%]

Acoustic 20ms 86.03 53.88 0.68 0.48
Image-based 20ms 76.37 12.83 0.72 0.74

Mixed 5ms 47.94 -3.26 0.50 0.57
Mixed 10ms 63.80 -3.26 0.65 0.70
Mixed 20ms 75.59 -3.26 0.76 0.80
Mixed 50ms 83.06 -3.26 0.84 0.86

Table 2. Comparison with other blind speech segmentation
methods which report results on the TIMIT corpus in terms of
F-measure and R-value.

Method F-meas. R-value
Dusan et al. (2006) [7] 0.71 0.73
Esposito and Aversano (2005) [14] 0.75 0.74
Khanagha et al (2014) [15] 0.73 0.77
Rasanen et al. (2009) [13] 0.76 0.78
Estevan et al. (2007) [12] 0.76 0.80
Proposed method 0.76 0.80

4.4. Results

As a first evaluation we calculated the performance metrics
when using the two probability functions, acoustic and image-
based separately as the input of the peak detection module
that identifies phone boundaries. Table 1 shows these results
at an accuracy margin of 20ms. It can be noticed that neither
function achieves a satisfactory accuracy on its own. How-
ever, the image-derived probability function is significantly
more accurate than the acoustic one. It should be noted that
no individual optimisation was performed for either of the
two functions, and therefore the results could potentially be
improved. Nonetheless, when combining the two functions
into the mixed probability function, the results increase no-
tably. Table 1 shows these results at several accuracy margins.
At the 20 ms accuracy margin, results on the TIMIT test set
achieve a 0.76 F-measure, and an 0.80 R-value. As these re-
sults could be a result of overtuning the configuration on the
TIMIT data, we used the same setup on the CLIPS-Letto sub-
set. The results are similar: 0.77 F-measure and 0.79 R-value,
and perhaps could be improved by adapting the configuration
parameters on a small validation set from this data.

As it is common to report using the 20ms accuracy mar-
gin we present in Table 2 our results using this margin against
results obtained by other methods on the TIMIT data set and
on the same task, i.e. blind segmentation. We can see that the
spectrogram destriping method outperforms all other meth-
ods. Although the results are similar to the ones described

(a) (b)

Fig. 3. Normalised histogram (a) and boxplot (b) of the
TIMIT testset utterance-level R-values .

in [12], the authors reported a hit rate of 76% with 0% over-
segmentation, resulting in a 0.795 R-value, while our method
achieves an 0.802 R-value. This difference, however, could
have been caused by slight variations in the evaluation proce-
dure, and it is not statistically significant.

It is important to note that we used a 20ms minimum dis-
tance between peaks for our peak detection method. This
means that phone boundaries located less than 20ms from
each other are omitted. If we exclude these boundaries from
the test set (approx. 4% of the total number of boundaries in
the test corpus), our hit rate is equal to 78.72% at an over-
segmentation rate of -3.26%. This results in a R-value of
0.82. However, if the minimum distance is reduced to 5ms,
the over-segmentation rate increases dramatically. For this
reason we believe that it is better to maintain the 20ms value.

The F- and the R-values are considered good metrics for
the evaluation of the blind segmentation methods but they do
not inform how consistent a method is across the evaluation
data. To provide this information we present in Figure 3 the
histogram and boxplot of the R-values computed for each in-
dividual utterance. It is worth observing that these are con-
centrated around the 0.8 value with very few outliers, 90% of
the utterances are above 0.7, and 48% are above 0.8. This is a
good indication that that the proposed method performs well,
independent of the speaker or phonetic content, even though
it is completely unsupervised and unconstrained. Upon closer
inspection, it seems that the low R-values are determined by
a high degree of over-segmentation, which in turn can be
caused by spectral artefacts, or clipping in the speech data.

5. CONCLUSIONS

This paper introduced a novel method for blind phonetic
segmentation of speech that combines two sets of features.
One set is composed of the Mel cepstral coefficients, while
the other one is derived from the spectrogram image via the
use of an image destriping algorithm. The method is com-
pletely unsupervised and simple to compute as the additional
image-based features are also derived from the short term



Fourier transform of the speech signal. Results obtained us-
ing this method were found to be better than results obtained
by any other unsupervised segmentation evaluated on the
TIMIT test dataset, with an accuracy of 75.59% at -3.26%
over-segmentation rate, resulting in a 0.802 R-value. Similar
accuracies were obtained on a separate dataset of Italian read
speech corpus, 0.793 R-value, even though the method’s pa-
rameters were chosen using a subset of the validation material
from TIMIT. The results also show that the proposed method
is consistent across the entire evaluation dataset with very few
outliers in terms of the sentence-level R-values distribution.
As future work we would like to investigate if the visiogram
is also suited for noisy conditions, phone alignment, as well
as perhaps phone recognition. It would also be interesting to
study the voiced-voiced transitions into more detail, and to
determine a more suitable distance, or representation for this
type of boundary.
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